
Université de Lille

Doctoral School MADIS

University Department CRIStAL

Thesis defended by Corentin Barloy

Defended on July 5, 2024

In order to become Doctor from Université de Lille

Academic Field Computer Science

Speciality Theoretical Computer Science

On the complexity of regular
languages.

Thesis supervised by Sylvain Salvati Supervisor
Michaël Cadilhac Co-Monitor
Charles Paperman Co-Monitor

Committee members

Referees Arnaud Durand Professor at Université Paris-Diderot
Howard Straubing Professor at Boston College

Examiners Damien Pous Senior Researcher at ENS Lyon
Cristina Sirangelo Professor at Université Paris Cité
Sophie Tison Professor Emeritus at Université de Lille

Supervisors Sylvain Salvati Professor at Université de Lille
Michaël Cadilhac Associate Professor at DePaul University
Charles Paperman Associate Professor at Université de Lille

Colophon

Doctoral dissertation entitled “On the complexity of regular languages.”, written by Corentin Barloy, completed
on June 27, 2024, typeset with the document preparation system LATEX and the yathesis class dedicated to

theses prepared in France.

https://en.wikipedia.org/wiki/LaTeX
https://ctan.org/pkg/yathesis

Université de Lille

Doctoral School MADIS

University Department CRIStAL

Thesis defended by Corentin Barloy

Defended on July 5, 2024

In order to become Doctor from Université de Lille

Academic Field Computer Science

Speciality Theoretical Computer Science

On the complexity of regular
languages.

Thesis supervised by Sylvain Salvati Supervisor
Michaël Cadilhac Co-Monitor
Charles Paperman Co-Monitor

Committee members

Referees Arnaud Durand Professor at Université Paris-Diderot
Howard Straubing Professor at Boston College

Examiners Damien Pous Senior Researcher at ENS Lyon
Cristina Sirangelo Professor at Université Paris Cité
Sophie Tison Professor Emeritus at Université de Lille

Supervisors Sylvain Salvati Professor at Université de Lille
Michaël Cadilhac Associate Professor at DePaul University
Charles Paperman Associate Professor at Université de Lille

Université de Lille

École doctorale MADIS

Unité de recherche CRIStAL

Thèse présentée par Corentin Barloy

Soutenue le 5 juillet 2024

En vue de l’obtention du grade de docteur de l’Université de Lille

Discipline Informatique

Spécialité Informatique Théorique

Sur la complexité des langages
réguliers.

Thèse dirigée par Sylvain Salvati directeur
Michaël Cadilhac co-encadrant
Charles Paperman co-encadrant

Composition du jury

Rapporteurs Arnaud Durand professeur à l’Université Paris-Diderot
Howard Straubing professeur au Boston College

Examinateurs Damien Pous directeur de recherche à l’ENS Lyon
Cristina Sirangelo professeure à l’Université Paris Cité
Sophie Tison professeure émerite à l’Université de Lille

Directeurs de thèse Sylvain Salvati professeur à l’Université de Lille
Michaël Cadilhac mcf à DePaul University
Charles Paperman mcf à l’Université de Lille

Abstract vii

On the complexity of regular languages.

Abstract

Regular languages, languages computed by finite automata, are among the simplest objects in theoretical
computer science. This thesis explores several computation models: parallel computing with Boolean
circuits, processing of structured documents in streaming, and information maintenance on a structure
subject to incremental updates. For the latter, auxiliary structures are either stored in RAM or represented
by databases updated by logical formulae.
This thesis investigates the resources required to compute classes of regular languages in each of these
models. The methods employed rely on the interaction between algebra, logic, and combinatorics, notably
exploiting the theory of finite semigroups. This approach of complexity has proven extremely fruitful,
particularly in the context of Boolean circuits, where regular languages play a central role. This research
angle was crystallised by Howard Straubing in his book "Finite Automata, Formal Logic, and Circuit
Complexity", where he conjectured that any regular language definable by an arbitrary formula from a
logic fragment can be rewritten to use only simple, regular predicates.
The first objective of this manuscript is to prove this conjecture in the case of the Σ2 fragment of first-order
logic with a single alternation of quantification. A second result provides a description of space complexity,
in the streaming model, for verifying regular properties on trees. Special attention is given to properties
verifiable in constant and logarithmic space. A third objective is to describe all regular tree languages that
can be incrementally maintained in constant time in RAM. Finally, a last part focuses on the development
of efficient logical formulae for maintaining all regular languages in the relational model.

Keywords: regular languages, circuit complexity, finite semigroups, formal logic, tree languages, dynamic
problems.

Sur la complexité des langages réguliers.

Résumé

Les langages réguliers, langages calculés par automates finis, sont parmi les objets les plus simples de
l’informatique théorique. Cette thèse étudie plusieurs modèles de calculs : le calcul parallèle avec les
circuits booléens, le traitement en flot de documents structurés, et la maintenance d’information sur une
structure soumise à des mises à jour incrémentales. Pour ce dernier modèle, les structures auxiliaires sont
soit stockées en RAM, soit représentées par des bases de données mises à jour par des formules logiques.
Cette thèse étudie les ressources nécessaires pour calculer des classes de langages réguliers dans chacun
de ces modèles. Les méthodes employées exploitent l’interaction entre algèbre, logique et combinatoire,
en mettant notamment à profit la théorie des semigroupes finis. Cette approche de la complexité s’est
notamment montrée extrêmement fructueuse dans le cadre des circuits booléens, où les langages réguliers
jouent un rôle central. Cette angle de recherche a été cristallisé par Howard Straubing dans son livre
“Finite Automata, Formal Logic, and Circuit Complexity”, où il émet la conjecture que tout langage régulier
définissable par une formule arbitraire d’un fragment de logique peut être réécrite en utilisant uniquement
des prédicats simples, c’est-à-dire réguliers.
Le premier but de ce manuscrit est de prouver cette conjecture dans le cas du fragment Σ2 de la logique du
premier-ordre avec une seule alternance de quantification. Un deuxième résultat propose une description
de la complexité en espace, dans le modèle de flot, pour vérifier des propriétés régulières sur des arbres. Une
attention particulière est portée aux propriétés vérifiables en espace constant et logarithmique. Un troisième
objectif est de décrire tous les langages réguliers d’arbres pouvant être maintenus incrémentalement en
temps constant en RAM. Enfin, une dernière partie porte sur le développement de formules logiques
efficaces pour maintenir tous les langages réguliers dans le modèle relationnel.

Mots clés : languages réguliers, complexité de circuits, semigroupes finis, logique formelle, languages
d’arbres, problèmes dynamiques.

CRIStAL
Université de Lille - Campus scientifique – Bâtiment ESPRIT – Avenue Henri Poincaré – 59655
Villeneuve d’Ascq

viii Abstract

Remerciements

Tout d’abord, je souhaite remercier mes trois encadrants pour leur aide et leur soutien, sans
lesquels cette thèse n’aurait pas pu voir le jour. Ce furent 4 années merveilleuses en votre
compagnie, puisse la dot-depth être bientôt résolue!

Merci Charles pour ta bonne humeur de chaques instants, même dans le manque de sommeil.
Le chaos ambiant qui t’entoure n’a d’égal que la profondeur de tes connaissances en théorie
algébrique des automates.

Merci Michaël pour ton enthousiasme sans bornes. Tu m’as également apporté énormément
scientifiquement, depuis que tu m’as conseillé la lecture du “Straubing”. Les bières sont plus
savoureuses à tes côtés.

Merci Sylvain pour avoir partagé tes connaissances inepuissables avec l’humble thésard que
je suis, malgré toutes tes responsabilités. Lourde est la tête qui porte la couronne!

Je remercie également Arnaud Durand et Howard Straubing pour avoir pris le temps de
rapporter cette thèse, et Damien Pous, Cristina Sirangelo et Sophie Tison d’avoir acceptés de
former ce jury si prestigieux.

Je suis également redevable envers Nath, Filip, Nathan, Shaull, Michaël et Lorenzo pour avoir
guidés mes premiers pas dans le monde vaste et incroyable de la recherche. Cette gratitude
s’étend à tous les enseignants qui ont un jour pris de leur temps pour me transmetre de leur
savoir, de la maternelle au MPRI, en passant par Saint-Louis et l’ENS Ulm. Bien entendu, je ne
parle pas uniquement des savoirs scientifiques, mais aussi de tout ce qui a aidé à faconner ma
vision du monde.

L’équipe LINKS a été un lieu fantastique où j’ai pu m’épanouir en faisant ce que j’aime.
Merci à ses membres: Iovka, Florent, Aurélien, Joachim, Mikael, Charles, Sylvain et Sophie.
J’ai promis à Sophie de m’excuser pour l’avoir appélée “Dinosaurus Emeritus” tout ce temps:
désolé! L’animation dans le bureau B213 a beaucoup joué dans la réussite de cette thèse, désolé
également de la gène occasionnée. Merci aux thésard du passé (Claire et Nico), du présent
(Antonio et Oliver) et du futur (Bastien et Mathias) de m’avoir supporté.

Faire de la recherche seul dans son coin est peu attrayant, et je dois énormément à toutes les
personnes avec qui j’ai un jour travaillé, ainsi que celles rencontrés en conférence et écoles d’été
(vive les centres de vacances CNRS). En particulier, j’ai hâte de démarer mon postdoc à Bochum
avec Thomas et toute son équipe (Nils, Felix, Marco, Fabian et Florian).

Pour en finir avec la thématique “recherche”, le soutien des assistants à la recherche est
inestimable. Merci en particulier à Nathalie et Nicole, sans qui la partie administrative aurait
été beaucoup plus lourde.

ix

x Remerciements

Je remercie toutes les personnes avec qui je me suis lié d’amitiés durant ce long parcours et
dont la liste serait trop longue à écrire. Merci à Oliver d’avoir été le compagnon de bureau idéal,
surtout quand il fallait se moquer des permanents du labo. Tu vas me manquer.

Ma grande famille a aussi été un soutien indéfectible. Encore une fois, une liste exhaustive
serait trop longue mais merci à vous tous. Merci à mes parents et à ma soeur de m’avoir soutenu
depuis toutes ces années.

Merci à Riemann d’être très mignon.
Enfin, merci à Célestine d’être la personne la plus incroyable sur Terre. Tu illumines ma vie à

chaque instant.

Contents

Abstract vii

Remerciements ix

Contents xi

Introduction 1

I Preliminaries 7

Notations 9

1 Automata and Logic 11
1.1 Finite automata on finite words . 12
1.2 Finite automata on finite trees . 13
1.3 Monadic second-order logic . 15

2 Algebra and Topology 25
2.1 Finite monoids . 26
2.2 Varieties of finite monoids . 29
2.3 Ordered monoids . 31
2.4 Adding regular predicates . 33
2.5 The profinite realm . 38
2.6 Forest algebras . 41

3 Circuit Complexity and Lower Bounds 47
3.1 Boolean circuits . 48
3.2 Adding arbitrary predicates to the logic . 52
3.3 Lower bounds . 54

4 Regular Languages and Circuit Classes 63
4.1 Separations witnessed by regular languages . 65
4.2 Straubing properties . 69

II Results on Regular Languages 79

xi

xii Contents

5 Circuit Complexity: the Regular Languages of Σ2 81
5.1 Lower bounds against Σ2[arb] . 82
5.2 Warm-up : (ac∗b+ c)∗ < Σ2[arb] . 86
5.3 Neutral Straubing property . 88
5.4 Full Straubing property . 92
5.5 Going further . 101

6 Streaming Complexity: Processing Regular Properties of XML Documents 105
6.1 Weak validation . 107
6.2 Registerless languages . 110
6.3 Stackless model . 118
6.4 Term encoding . 130
6.5 Algebraic characterisations . 133
6.6 Going further . 140

7 Incremental Complexity: Maintaining Regular Languages under Small Changes 145
7.1 Two models . 146
7.2 Regular languages maintainable in RAM . 150
7.3 Regular languages in Dyn-FO . 163

Conclusion 177

Bibliography 179

Introduction

Models of computation are at the heart of theoretical computer science. They are formalisms
that describe how an algorithm is executed abstractly. For instance, Turing machines model
the mathematical essence of computations, whereas the von Neumann architecture models
executions on modern computers, along with the memory management. The usage of ressources
of all kinds has been considered extensively, with for instance the complexity classes P, NP and
PSPACE that account for the execution time and size of used memory of Turing machines, and the
measurement of the number of communications between different memories in the von Neumann
model. However, these kinds of models are very expressive, and studying their complexity is
a challenging task. Moreover, many semantic properties on them are undecidable, starting
from deciding if an algorithm accepts every input, which makes a formal language described
by a Turing machine hard to comprehend. There exist restricted models of computation with
limited expressive power, but easier to handle and understand, that fix some of these issues.
These models are usually amenable to a study of their semantic properties. Some of them are
even designed to be compiled efficiently to programs that are optimised for some well-chosen
parameters. The best example of a limited yet interesting model is finite automata: their input
is received sequentially and only a bounded information can be stored in memory. Moreover,
finite automata are designed to be compiled such that their execution is fast and has a bounded
memory usage. They also enjoy numerous extensions with various computing mechanisms, that
are studied to solve practical problems, like automated verification of softwares.

Automata have been studied for a long time, starting with Kleene’s theorem [69] that gives a
simple programming language, regular expressions, to specify all languages expressible by a
finite automaton. Nowadays, regular expressions have found their place in many fields of com-
puter science, and their optimisation is leading to significant speed-up of the execution of other
algorithms. Regular expressions are used in the field of linguistics to describe patterns in natural
languages. Linguists often use regular expressions to analyse and describe linguistic phenomena
such as morphology and syntax. Regular expressions are commonly used in text processing
tasks: search engines use regular expressions to match and retrieve relevant information from
vast amounts of text data, and programming language compilers use regular expressions to parse
source codes. Regular expressions are utilised in bioinformatics for DNA sequence analysis and
pattern matching. Regular expressions play a crucial role in network security applications for
tasks like intrusion detection and filtering. Regular expressions are employed in data extraction
tasks, where structured data needs to be extracted from unstructured text sources like web
pages or documents. They help identify and extract specific patterns or information from large
volumes of textual data efficiently. Regular expressions are also integrated into text editors to
facilitate powerful search and replace operations.

Computation and logic were deeply interwoven from the start of computer science. Logic is
a successful tool to design programming languages, ranging from logic programming languages
like Prolog and Datalog, to databases query languages like SQL. More recently, a whole subfield

1

2 Introduction

of complexity theory, descriptive complexity, has been devoted to finding logical description of
complexity classes. The goal is to find purely syntactic representation of ressource consumption,
which is a deeply semantic property. One the gemstones, and starting points, of descriptive
complexity is Fagin’s Theorem [39] that shows that the languages in NP are exactly those definable
with a formula of existential second-order logic. Finding a logic for the class P is an involved
challenge still open in its full generality. This logical appraoch also works for finite automata:
Büchi [21] showed their expressive power is the same as monadic second-order formulae. In
this case, we also have tools from algebra and topology to study automata. Schützenberger [112]
showed how to canonically associate a finite algebraic structure, the syntactic semigroup, to any
regular language. Many properties of the language are reflected on the obtained semigroup.
For instance, McNaughton and Papert [79] described all the languages computed by a first-
order formula. The property they found can be read directly on the syntactic semigroup by
Schützenberger theorem [113], yielding a decision algorithm to decide if a language is computed
by a first-order formula. A lot of work has been dedicated since to understand classes of regular
languages. When the class of regular languages has some nice closure properties, the work
of Eilenberg [37] shows that membership to the class can be decided by looking only at the
syntactic monoid. In addition, thanks to Reiterman [109], regular languages can be studied
through the prism of the so-called profinite topology, a generalisation of the fruitful p-adic
topologies in arithmetic. It gives that the classes of languages that fall under the scope of the
work of Eilenberg can be described by a set of topological equations. All these techniques are
powerful tools for the study of regular languages.

There are many different models of computation, built on different paradigms: what kind
of operations can the model perform?, is it deterministic?, is it probabilistic?, are there several
parallel computation devices?, what does the input represent and how is it received?, can we
reuse previous computations?, . . . Even when the model is fixed, efficiency can be measured
in many ways. Typically, the time of execution and the size of the memory needed are two
investigated parameters, as studied in the classical complexity classes P, NP and PSPACE. One
could think of many more, like power consumption or ecological impact. We describe all the
variants considered in this manuscrit.

• Finite automata. They were already introduced: they receive the input sequentially and can
only use a memory of bounded size.

• Boolean circuits. They are close to hardware and to the electronical circuits we can find
in a microprocessor. They consist in logical AND, OR and NOT gates wired together.
They correspond to a model of parallel computation, where the gates can be evaluated
independently of the others. We consider parameters such as the size of the representation
of a circuit, and the time needed for a circuit to stabilise, ie. every gate has reached its final
value.

• Stackless automata. This variant considers that the input represents a serialised tree (like
an XML document), and is received sequentially. This new model can use a single counter
to store the depth of the tree in addition of the finite memory of finite automata.

• Incremental problems. The memory is not erased between two runs of the algorithm.
Therefore, previous results of intermediate computations can be reused to speed up
following computations.

In this thesis, we investigate the relation between regular languages and those models, with
the help of logic, algebra and topology. Looking at these simple languages inside potentially
considerably bigger classes can shed some light on the latter classes. Indeed, this point of
view was first used in circuit complexity, and was dramatically successful. The descriptive
complexity of circuit classes is known to involve logic formulae that have arbitrary numerical

Introduction 3

predicates. Moreover, it is interesting to see how regular languages, witnessing completely
sequential computations, help understand the parallel computation of circuits. It started with
the first major inexpressibility results for a Boolean circuit for the PARITY language, which
is regular. This is the language of words over {0,1} that have an even number of 1s, and it
was shown by Furst, Saxe and Sipser [41] that it requires either exponentially many gates
or a superconstant evaluation time. Later, the study of small-depth circuits has shown that
many different classes can be separated with regular languages. Moreover, there are regular
languages that are complete, for a very strong notion of reduction, for certain classes of circuits.
For instance, there is a language that is complete for the class of circuits with polynomially
many gates and logarithmic depth, by Barrington’s theorem [13]. This motivates the systematic
study of regular languages inside circuits classes. A global picture was obtained by Barrington,
Compton, Straubing and Thérien [14], in particular with results on circuits that have modulo
counting gates. Howard Straubing [126], in his book, proposed a conjecture to identify all regular
languages in circuits classes, based on logic. It states that the regular languages of a logic that
can use arbitrary predicates are exactly the languages of the same logic that can only use regular
numerical predicates. Thanks to the toolbox of semigroup theory, the latter logic class, with
regular numerical predicates, is often decidable and well understood. The conjecture is known
to hold for some fragments of logic, but a few counter-examples are known.

In this manuscript, we build on the success of this study, and transfer it to other notions of
complexity. For instance, the study of regular languages inside incremental complexity classes
has already started. Skovjberg Frandsen, Miltersen and Skyum [122] and Amarilli, Jachiet and
Paperman [7] give a trichotomy of regular languages parametrised by their complexity regarding
incremental complexity. Parallels are known between incremental classes and circuit classes [28,
81, 33], making it even more tempting to pursue this line of work. For stackless automata, their
use is primarly for the validation and querying of XML documents. Querying regular properties
is a well identified problem, and specific query languages, like XPath, have been designed. In
all those topics, the methodology built for the study of regular languages, ie semigroup theory,
inside circuit classes is very fruitful for the other notions of complexity as well.

This manuscript is divided into two parts. The first part introduces the main notions and the
previous work. It is itself divided into four chapters.

• Chapter 1. We formally introduce the concept of finite automata, both for inputs that are
words or trees. We define monadic second-order logic as well, and explicit the many ties it
has with regular languages. We see in particular that the expressivity of a formula depends
both on syntactic restrictions and on the available numerical predicates.

• Chapter 2. Finite semigroups are presented as computation devices that are expressively
equivalent with regular languages. It allows to use the algebraic machinery to study regular
languages. We give the framework of varieties that is a bridge between classes of languages
and classes of semigroups, and present the links with topology and the equational theory
of semigroups. Regular numerical predicates in logical formulae will play an important
role, and we already show a theory to algebraically take into account the addition of regular
predicates into a logic. The chapter is concluded with an equivalent framework for regular
tree languages.

• Chapter 3. We introduce Boolean circuits, and the classes of small-depth circuits that we
consider in this thesis. As for finite automata, we present their descriptive complexity.
This time, the formulae under consideration can use arbitrary numerical predicates. We
detail the main lower bounds techniques in the field that are used to show inexpressibility
results.

• Chapter 4. As mentioned previously, we motivate our study of the complexity of regular
languages. We especially focus on circuit complexity, and review the major results on

4 Introduction

the subject. As mentionned, a fragment of logic has the Straubing property [126] if
every formula using arbitrary numerical predicates that defines a regular language can
be rewritten using only simpler, regular numerical predicates. Proving that a fragment
possesses such a property is very enlightening on the properties of that fragment. We review
the known fragment possessing the Straubing property, and we exhibit two fragments that
falsify it.

The second part gives our new results for regular languages that belong into several models of
computation. It is itself divided into three chapters.

• Chapter 5. We characterise the regular languages expressible in Σ2, the fragment of first-
order formulae with one alternation of quantifiers. It is achieved by showing that Σ2 has
the Straubing property. This is done for regular languages with a neutral letter first, by
showing lower bounds against depth-3 Boolean circuits with bounded top fan-in. The
heart of the combinatorial argument resides in studying how positions within a language
are determined from one another. We then extend the result to any regular language by
using algebraic techniques coming from finite category theory.

• Chapter 6. We study the processing of regular properties of streamed trees, encoded as
words. In this work, we work within the weak validation setting of Segoufin and Vianu
[116]: the input work has to be the valid encoding of some tree. In this setting, it is hard to
characterise all regular languages that can be weakly validated with a finite automaton.
Hence we consider special regular languages, named RPQs, whose definitions only depend
on the paths within a tree. First, we characterise all RPQ that are weakly validatable
with a finite automaton. This shows that finite automata cannot capture many regular
properties in this framework. However, using a stack is costly in memory. Thus, we
propose an intermediate stackless model based on register automata equipped with a
single counter, used to maintain the current depth in the tree. Our main result is an
effective charactersation of RPQs that can be weakly validated with a stackless automaton.
We conclude the chapter with an algebraic study of the classes appearing.

• Chapter 7. We tackle the incremental maintenance of regular languages: a same algorithm
has to be run several times in a row, and the intermediate results can be stored to be reused.
So, there is a word that is subject to updates and we have to be able to answer efficiently
at any moment whether the word belongs to a given language or not. We consider first
that we can maintain data structures in the RAM model, following Skovbjerg Frandsen,
Miltersen, and Skyum and later Amarilli, Jachiet and Paperman [7]. We transfer their
result to the case of tree languages and characterise all regular tree languages that can be
maintained with a constant time per update and query in the RAM model. In a second
time, we consider the complexity class Dyn-FO, that stems from database theory. The
auxiliary data are stored in datebases that can be updated with first-order formulae. In this
setting, we study the fine-grained complexity of the formulae needed to maintain regular
languages.

Bibliography of the current chapter

[7] Antoine Amarilli, Louis Jachiet, and Charles Paperman. “Dynamic Membership for
Regular Languages”. In: 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021). Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell.
Vol. 198. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.ICALP.
2021.116.

https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.4230/LIPIcs.ICALP.2021.116

Bibliography of the current chapter 5

[13] David A. Barrington. “Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1”. In: Journal of Computer and System Sciences 38 (1989).
doi: 10.1016/0022-0000(89)90037-8.

[14] David A. Barrington, Kevin Compton, Howard Straubing, and Denis Thérien. “Regular
languages in NC1”. In: Journal of Computer and System Sciences 44.3 (1992). doi: 10.1016/
0022-0000(92)90014-A.

[21] J. Büchi. “Weak Second-Order Arithmetic and Finite Automata”. In: Mathematical Logic
Quarterly 6 (1960). doi: 10.1007/978-1-4613-8928-6_22.

[28] R. F. Cohen and R. Tamassia. “Dynamic expression trees”. In: Algorithmica 13 (1995). doi:
10.1007/BF01190506.

[33] Guozhu Dong and Jianwen Su. “Arity Bounds in First-Order Incremental Evaluation and
Definition of Polynomial Time Database Queries”. In: Journal of Computer and System
Sciences 57.3 (1998). doi: 10.1006/jcss.1998.1565.

[37] Samuel Eilenberg. “Automata, Languages and Machines, Vol. B”. In: Verlag: Academic
Press Inc, 1976.

[39] Ronald Fagin. “Generalized first-order spectra, and polynomial time recognizable sets”.
In: SIAM-AMS Proc. 7 (Jan. 1974).

[41] Merrick Furst, James B Saxe, and Michael Sipser. “Parity, circuits, and the polynomial-
time hierarchy”. en. In: (1984). doi: 10.1007/BF01744431.

[69] SC Kleene. “Representation of events in nerve nets and finite automata”. In: Automata
Studies: Annals of Mathematics Studies. Number 34 34 (1956).

[79] Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T. research
monograph no. 65). The MIT Press, 1971.

[81] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia.
“Complexity models for incremental computation”. In: Theoretical Computer Science 130.1
(1994). doi: 10.1016/0304-3975(94)90159-7.

[109] Jan Reiterman. “The Birkhoff theorem for finite algebras”. In: algebra universalis 14 (1982).
doi: 10.1007/BF02483902.

[112] M. P. Schützenberger. “Une théorie algébrique du codage”. fre. In: Séminaire Dubreil.
Algèbre et théorie des nombres 9 (1955).

[113] M.P. Schützenberger. “On finite monoids having only trivial subgroups”. In: Information
and Control 8.2 (1965). doi: 10.1016/S0019-9958(65)90108-7.

[116] Luc Segoufin and Victor Vianu. “Validating Streaming XML Documents”. In: Proc. PODS
2002. ACM, 2002. doi: 10.1145/543613.543622.

[122] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. “Dynamic word
problems”. In: J. ACM 44.2 (1997). doi: 10.1145/256303.256309.

[126] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. en. Boston, MA:
Birkhäuser, 1994. doi: 10.1007/978-1-4612-0289-9.

https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/BF01190506
https://doi.org/10.1006/jcss.1998.1565
https://doi.org/10.1007/BF01744431
https://doi.org/10.1016/0304-3975(94)90159-7
https://doi.org/10.1007/BF02483902
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1145/543613.543622
https://doi.org/10.1145/256303.256309
https://doi.org/10.1007/978-1-4612-0289-9

6 Introduction

Part I

Preliminaries

Notations

We give here several notations for very classical mathematical notions.

• We use N, Z and R to respectively denote the sets of natural (resp. relative, real) numbers.
• For x ∈R, its floor and ceiling are denoted by ⌊x⌋ and ⌈x⌉.
• For n ∈N, the factorial of n is the number n! = 1× 2× · · · ×n.
• For A a set, Ac is its complement. For A and B two sets, their set difference is denoted by
A−B.

• A relation on A is a subset A×A. It is an order if it is reflexive, transitive and antisymmetric.
It is an equivalence if it is reflexive, transitive and symmetric. An equivalence class is a set
of elements that are all in relation.

• A partition of A is a set of subsets A1, . . . ,An such that every element of A belongs to exactly
one of the Ai . The set of equivalence classes of an equivalence relation forms a partition.

• A function f : A → B is injective if for every x,y ∈ A, f (x) = f (y) implies x = y. It is
surjective if for every x ∈ B, there exists y ∈ A such that f (y) = x. It is bijective if it is both
injective and surjective. The inverse image of a subset C ⊆ B is the set

f −1(C) = {x ∈ A | f (x) ∈ C}.

• A graph consists in a set of vertices V and a set of edges E ⊆ V ×V . A path in a graph is
a sequence of vertices such that two consecutive vertices are in relation in E. A cycle is a
path such that the first and last vertices are the same. A directed acyclic graph (DAG) is a
directed graph that has no cycle.

• We use the Landau notation for asymptotic comparisons of functions. Let f ,g : N→N be
two functions. We say that f = o(g) if f (n)/g(n) tends to 0 when n tends to infinity. We say
that f =O(g) if there is a constant C such that f (n) ≤ C ·g(n) for every n. We say f = θ(g) if
both f =O(g) and g =O(f) stand.

9

10 Notations

Chapter1
Automata and Logic

Outline of the current chapter

1.1 Finite automata on finite words 12
1.2 Finite automata on finite trees 13
1.3 Monadic second-order logic 15

1.3.1 Formalism . 15
1.3.2 Links with regular languages. 17
1.3.3 Defining languages . 18

Finite automata give a handy abstraction for finite systems arising in computer science. They
model systems whose behaviour only depends on a finite information gathered on the previous
inputs. Usually, they are machines that take words as input, that is to say that we assume that
the input is discrete and fed to the system one at a time. They form a deeply restricted version
of Turing machines that has no tape to work on. For instance, it is customary that text editors
and lexical analysers are created as finite automata. Indeed, scanning through the code of a
program to obtain a syntax tree exclusively needs to remember a finite chunk of the processed
string. This theory of finite automata is particularly rich and mathematically elegant, and has
been investigated for a long time. Numerous enhancements and generalisations of the power of
finite automata have been considered, and led to many results. See [62] for an introduction on
automata theory and [94] for a broad coverage on the topic.

One way of expanding the capacity of automata is by making them process tree-structured
data instead of words. In this case, we talk about tree automata. See [29] for an introduction on
tree automata.

There exists a profound connection between automata theory and formal logic, dating back
to Büchi [21] in the sixties who demonstrated that finite automata and monadic second-order
logic can exactly express the same languages. This connection has since evolved and found
application in various fields such as automated software verification and program synthesis. The
scope of formal logic even covers broader complexity classes like P, NP or PSPACE. For instance,
Fagin [39] uncovered the equivalence between NP and existential monadic second-order logic.
See [130] for an introduction on the links between logic and finite automata.

11

12 CHAPTER 1. Automata and Logic

1.1 Finite automata on finite words

Let A be a finite set, that will be called the alphabet. Its elements will be called letters. A word
over A is a finite sequence w = a1 · · ·an of letters of A. The word without any letters is called the
empty word and is denoted by ε. The length of w, denoted by |w|, is the integer n. For a a letter,
|w|a is the number of a’s in the sequence. The concatenation of two words a1 · · ·an and b1 · · ·bm is
the word a1 · · ·anb1 · · ·bm. The set of words over A is denoted by A∗. A language L is a subset of
A∗. A language L has a neutral letter if there is a letter a that can be removed or added without
affecting membership: for every word u,v, uv ∈ L if and only if uav ∈ L. We call Neut the class
of languages with a neutral letter. We will often omit quantifications over the alphabet, as they
will be most of the time obvious.

We can now define the most basic recognition device for languages of finite words.

Definition 1.1.
A (non-deterministic) finite automaton is a tuple A = (Q,A,δ, I,F) where:

• Q is a finite set called the set of states,
• A is an alphabet,
• δ ⊆Q ×A×Q is called the transition relation,
• I and F are both subsets of Q and are respectively called the initial and final sets.

A run in A is an alternating sequence of states and letters (q0, a1,q1, a2, . . . , qn−1, an,qn) such
that for all 0 ≤ i < n, (qi , ai+1,qi+1) ∈ δ. It is graphically denoted by

q0
a1−−→ q1

a2−−→ ·· ·qn−1
an−−→ qn.

Its label is the word a1 · · ·an. It is accepting if q0 ∈ I and qn ∈ F, in which case we say that
a1 · · ·an is accepted by the automaton. The language of the automaton, denoted by L(A), is the
set of words accepted by A. A language is recognisable if it is the language of some automaton.

Regular expressions. Let L andM be two languages. We can define three natural operations
on languages:

• Union: L∪M = {w ∈ A∗ | w ∈ L or w ∈M},
• Concatenation: L ·M = {uv | u ∈ L and v ∈M},
• Kleene star: L∗ =

⋃
n∈NLn, where Ln denotes the concatenation of L by itself nth times.

Definition 1.2.
We inductively define the set of regular expressions. It is the smallest set such that

• both � and ε are regular expressions,
• for every letter a in the alphabet, a is a regular expression,
• for every regular expressions e and f , the expressions e+ f , e · f , e∗ are regular as well.

We can associate a language to any regular expression. We define L(�) to be the empty
language and L(ε) = {ε}. If a ∈ A, then L(a) is the singleton {a}. If e and f are regular expressions,
then L(e+ f) = L(e)∪L(f), L(e · f) = L(e) · L(f) and L(e∗) = L(e)∗. A language is regular if it is the
language of some regular expression.

1.2. Finite automata on finite trees 13

The following is the starting point of automata theory.

Theorem 1.3 (Kleene [69]).
The set of recognisable languages and the set of regular languages are exactly the same.

We will prefer the adjective “regular” to refer to these languages. We denote by Reg the set
of all regular languages.

Minimal automaton. An automaton is said to be deterministic if, for every state q ∈Q and letter
a ∈ A, there is at most one state q′ such that (q,a,q′) ∈ δ. In this case, for each letter a, we set
δa to be the function that associates a state q to this q′, and we denote δa(q) by q · a. For u ∈ A∗,
we extend this definition and notation to the function δu . It is well known that every regular
language can be recognised by a deterministic automaton that is minimal with regard to the
number of states. This minimal automaton is unique up to isomorphism.

We can explicitly describe it. Let L be a language. For u ∈ A∗, the left (resp. right) quotient of
L by u is the language u−1L = {v | uv ∈ L} (resp. Lu−1 = {v | vu ∈ L}). The Nerode automaton for
L is the automaton AL = (Q,A,δ, I,F) with:

• Q the set of left quotients,
• δ the set of triplets (u−1L, a, (ua)−1L) for u ∈ A∗, a ∈ A,
• I = L,
• F the set of left quotients of L by a word in L.

Fact 1.4 (Nerode [83]).
The language L is regular if and only if it has only a finite number of left quotients. In this
case, its Nerode automaton AL is the unique minimal automaton for L.

1.2 Finite automata on finite trees

We still have a finite alphabet A. A tree and a forest over A are mutually defined inductively:

• the empty forest ε is a forest,
• for f a forest and a ∈ A, a(f) is a tree,
• for t1, . . . , tn a sequence of trees, t1 + · · ·+ tn is a forest.

We will usually remove ε from the expressions, that is to say that we will write a instead of
a(ε).

Example 1.5.
The tree a(b(a+ a) + a+ b) is graphically represented as

a

b

a a

a b

1

14 CHAPTER 1. Automata and Logic

We can define several classical notions. The root of a tree a(f) is the letter a. A subtree of a
tree a(f) where f is defined by the sequence t1, . . . , tn is any of the trees ti , or recursively any
subtree of ti . We can view a tree as a connected directed acyclic graph whose nodes are labelled
by elements in A, with a distinguished node that is the root. In this case, a leaf is a node of
fan-out 0. The other nodes are called internal. A path in a tree is a path in the underlying graph.
A descendant of an internal node n is a node m such that there is a path from n to m. If the path
is of size 1, we say that m is a child of n. The relabelling of a tree is another tree with the same
underlying graph and different labels (possibly from another alphabet). It this case, we say that
the trees have the same shape.

A language of trees is a set of trees.
Note that we defined what is known in the literature as unranked trees, that is to say that

there are no restrictions on the number of children of a node.

Trees as words. For some applications, such as processing of trees in streaming, trees are seen
as words. The markup encoding translates a tree over A into a finite word over A∪A, where A has
fresh symbols {a | a ∈ A}. The alphabet A is the set of opening tags and A is the set of closing tags.
In this context, the encoding is the following:

• ⟨ε⟩ = ε,
• for f a forest and a ∈ A,

〈
a(f)

〉
= a

〈
f
〉
a,

• for t1, . . . , tn some trees, ⟨t1 + · · ·+ tn⟩ = ⟨t1⟩ · · · ⟨tn⟩.
For a tree language L, its markup language is the set ⟨L⟩ of encodings of words of L.
There exists a second possible encoding, which does not recall the symbol that is being closed.

Let ◁ be a universal closing symbol. The term encoding of a tree t is denoted as [t] and is defined
as the markup encoding but for f a forest and a ∈ A:

[a(f)] = a [f]◁ .

Tree automata. There is an analogue to finite automata for trees. The model described here is
known as hedge automaton, but we will simply call it a tree automaton for the sake of simplicity.

Definition 1.6.
A (non-deterministic) finite tree automaton is a tuple A = (Q,A,δ,F) where:

• Q is a finite set called the set of states,
• A is an alphabet,
• δ is a finite set of transitions of the form a(L)→ q where a ∈ A, q ∈Q and L is a regular

language over Q,
• F is a subset of Q and is called the set of final states.

A run in A is a tree over A×Q such that for every node (a,q) with children (a1,q1), . . . , (an,qn),
there is a transition a(L)→ q with q1 · · ·qn ∈ L. Its label is the relabelled tree over A where a
node (a,q) becomes a. It is accepting if the root is labelled by a state in F. The language of the
automaton, denoted by L(A), is the set of words accepted by A. A tree language is recognisable
(or regular) if it is the language of some tree automaton.

Document Type Definitions. Another way to define a regular tree language is by the Document
Type Definition (DTD) syntax. It is closer to real life specification of trees. While the last

1.3. Monadic second-order logic 15

approach was bottom-up, going from the leaves to the root, this one is top-down. This formalism
has been studied in [86].

A DTD over A is a finite set of rules a→L where a is a letter and L a regular language. A
tree can be derived by a DTD d if for every node labelled by a with children labelled by a1, . . . , an,
there is in d a rule a→L with a1 · · ·an ∈ L.

Definition 1.7.
A specialised DTD over A is a triple (A′ ,d,µ) where:

• A′ is a finite alphabet,
• d is a DTD over A′ ,
• µ is a function from A′ to A.

A tree t can be derived by a specialised DTD if there is a tree t′ over A′ that can be derived
from d and such that µ(t′) = t, where the mapping is applied on each node. It is known that the
trees derivable by a specialised DTD are precisely the regular tree languages.

1.3 Monadic second-order logic

1.3.1 Formalism

Syntax. We start by giving the syntactic definition of monadic second-order logical formulae
(MSO formulae for short). After laying down all the building blocks, we will explain how to
interpret them.

We assume given two infinite sets of variables V1 and V2. They are respectively called the sets
of first-order and second-order variables. We will usually use the end of the roman alphabet to
denote their elements: x,y,z,x1,x2, . . . for V1, and X,Y ,Z,X1,X2, . . . for V2.

A letter predicate is one of the symbols a for a ∈ A. A signature σ is a set of symbols, the
numerical predicates, each of them coming with an integer called the arity of the predicate.

An atomic formula is one of the following expressions:

• a(x) for a ∈ A and x ∈ V1,
• R(x1, . . . ,xk) for R ∈ σ of arity n and x1, . . . ,xk ∈ V1,
• x ∈ X for x ∈ V1 and X ∈ V2.

Definition 1.8.
We define by induction the set of (MSO) formulae. Let ϕ and ψ be two formulae.

• An atomic formula is a formula,
• ϕ ∧ψ is a formula,
• ¬ϕ is a formula,
• ∃xϕ is a formula for x ∈ V1,
• ∃Xϕ is a formula for X ∈ V2.

A formula constructed without the last two rules is called quantifier-free. A variable x (or X)
is free in a formula ϕ if it is not quantified, that is to say that x appears in a subformula on which
∃x (or ∃X) is never applied. Formally, we define the set of free first-order (resp. second-order)
variables F1(ϕ) (resp. F2(ϕ)) with the same notation as in the preceding definition:

16 CHAPTER 1. Automata and Logic

• F1(a(x)) = {x},
• F1(R(x1, . . . ,xk)) = {x1, . . . ,xk},
• F1(x ∈ X) = {x},
• F1(ϕ ∧ψ) = F1(ϕ)∪F1(ψ),
• F1(¬ϕ) = F1(ϕ),
• F1(∃xϕ) = F1(ϕ)− {x},
• F1(∃Xϕ) = F1(ϕ),

• F2(a(x)) = ∅,
• F2(R(x1, . . . ,xk)) = ∅,
• F2(x ∈ X) = {X},
• F2(ϕ ∧ψ) = F2(ϕ)∪F2(ψ),
• F2(¬ϕ) = F2(ϕ),
• F2(∃xϕ) = F2(ϕ),
• F2(∃Xϕ) = F2(ϕ)− {X}.

A formula without free variables is called a sentence.

Semantic. We can now add some semantics. First of all, we need to give a meaning to the
symbols in the signature σ . A numerical relation of arity k is a collection for every integer n of
a set of k-tuples of {1, · · · ,n}. An interpretation I of the signature is a function that maps every
numerical predicate of arity k to a numerical relation of arity k. Most of the time, it is enough to
specify a numerical relation as a set of k-tuples of N. In this case, it is understood that when
restricted to an integer n we only keep the tuples containing integers smaller than n.

Example 1.9.
The following are the most frequent numerical relations used as interpretations of numerical
predicates.

• Equality predicate x = y: all the tuples (i, i) with i ∈N,
• Order predicate x < y: all the tuples (i, j) with i < j,
• Successor predicate x = y + 1,: all the tuples (i, i + 1) for i ∈N,
• Modular predicate x ≡q r, parametrised by two integers q and r: all the tuples (i) with i

congruent to r modulo q.
• Maximal predicate x = max: it associates to n ∈N the singleton {(n)}.
• Minimal predicate x = 1: it consists solely of the singleton {(1)}.
• For k an integer, we define analogously x = y + k, x = max−k and x = k.

An attentive reader would notice that we used the word “predicate” instead of “interpretation”
in the examples. Indeed, we will blur the lines between the signature and the interpretation, and
often stop making a distinction. For instance, we will allow ourselves to write

∃x∃y, x < y ∧ a(x)∧ (y ≡3 2)

for a formula over a signature with two symbols of arity 1 and 2 and interpreted as the modular
interpretation with parameters (3,2) and the order.

We are interested in expressing properties of finite words, hence we want to give a sense to

w |=I ϕ

where w is a word, ϕ a formula and I an interpretation of the signature. It will mean that w
satisfies ϕ under I . However, while it is intuitive to do so for sentences, it is not straightforward
for formulae with free variables. Given the inductive construction, it is crucial to generalise |=I
to formulae with free variables. To do so, we introduce (V1,V2)-structures. Roughly speaking,
they will allow to store the assignation of free variables. Formally, let V1 (resp. V2) be a finite set

1.3. Monadic second-order logic 17

of first-order (resp. second-order) variables. A (V1,V2)-structure is a word

(a1,A1,B1) · · · (an,An,Bn)

over the alphabet A× 2V1 × 2V2 such that A1, . . . ,An partitions V1. There are no restrictions on the
second-order variables. With this definition, we can define the satisfaction relation w |=I ϕ. It
will always be the case that w is a (F1(ϕ),F2(ϕ))-structure. For the case of a sentence, it will be
satisfied by (∅,∅)-structures or, in other terms, words. Note that all variables appearing in atomic
formulae are necessarily free.

Definition 1.10.
Let w be a (V1,V2)-structure, ϕ a MSO formula and I an interpretation. We characterise
w |=I ϕ by induction:

• w |=I a(x) whenever w has a letter (a,A,B) with x ∈ A,
• w |=I R(x1, . . . ,xk) whenever (i1, . . . , ik) is in the numerical relation given by I (R), where
ij is the position in w in which the variable xj appears,

• w |=I x ∈ X whenever w has a letter (a,A,B) with x ∈ A and X ∈ B,
• w |=I ϕ ∧ψ whenever both w |=I ϕ and w |=I ψ hold,
• w |=I ¬ϕ whenever w |=I ϕ does not hold,
• w |=I ∃xϕ whenever (a1,A1,B1) · · · (ai ,Ai ∪ {x},Bi) · · · (an,An,Bn) |=I ϕ holds for some i,
• w |=I ∃Xϕ whenever (a1,A1,B1) · · · (ai1 ,Ai1 ,Bi1∪{X}) · · · (aij ,Aij ,Bij ∪{X}) · · · (an,An,Bn) |=I
ϕ holds for some subset of positions i1, . . . , ij .

The language of a sentence ϕ under an interpretation I , designated by L(ϕ,I), is the set
of words that satisfy ϕ under I . We say that two formulae are equivalent (under a given I)
whenever they define the same languages.

A prominent logic is the set of first order formulae, abridged FO. It is constructed as MSO,
but without the second-order constructions x ∈ X and ∃Xϕ. Its semantic is the same as MSO on
the remaining construction rules.

In the formula employed in the everyday life of a scientist, there are also formulae constructed
with disjunctions, implications and with universal quantifiers. We chose not to include them in
the syntax for brevity, but we provide syntactic sugar for these formulae:

• ϕ ∨ψ is defined as ¬(¬ϕ ∧¬ψ),
• ϕ⇒ ψ is defined as ψ ∨¬ϕ,
• ϕ⇔ ψ is defined as ϕ⇒ ψ ∧ψ⇒ ϕ,
• ∀xϕ is defined as ¬∃x¬ϕ,
• ∀Xϕ is defined as ¬∃X¬ϕ.

We will drop the subscript I in the relation |= whenever the signature is clear.

1.3.2 Links with regular languages.

As mentioned in the introduction, the interplay between logical formalisms and regular lan-
guages has been first exhibited by a theorem of Büchi [21].

Theorem 1.11 (Büchi [21]).

18 CHAPTER 1. Automata and Logic

The regular languages are exactly the languages that are definable by a formula of MSO[<].

The proof goes by directly translating automata into formulae and vice versa. With this
equivalence in mind, a valid inquiry arises: is it essential to employ second-order quantifications
to fully encompass all regular languages, and characterise the regular languages in FO[<] if it is
the case. The answer has been given by McNaughton and Papert [79]: FO[<] is strictly weaker
than MSO[<], and they described its languages. Incidentally, it is a striking demonstration of
the algebraic method, that we will develop in the next chapter.

Star-free languages. A natural question is to understand which regular languages can be
defined with a first-order formula. It can been shown with an elementary proof that the language
(aa)∗ need second-order quantifiers to be defined by a formula. This motivates the study of
regular expressions without the Kleene star. However, with only union and concatenation
left, it is impossible to define infinite languages anymore. A way to circumvent this issue is
to allow the complementation operation instead of the Kleene star. Indeed, we can define set
complementation for a language L over an alphabet A:

Lc = A∗ −L.

Regular expressions are closed under complementation thanks to Kleene theorem and the fact
that automata can be complemented.

Definition 1.12.
We inductively define the set of star-free expressions. It is the smallest set such that

• for every letter a in the alphabet, a is a star-free expression,
• for every star-free expressions e and f , the expressions e+ f , e · f , ec are star-free as well.

Note that the regular expressions � and ε can be defined with star-free expressions and are
not required in the definition anymore. The language of a star-free expression is defined as for
regular languages with the additional L(ec) = L(e)c. We call a language star-free whenever it is
the language of some star-free expression.

Theorem 1.13 (McNaughton, Papert [79]).
The star-free languages are exactly the languages that are definable by a formula of FO[<].

1.3.3 Defining languages

A fragment of MSO is any subset of the whole set of MSO formulae, over a signature with
infinitely many symbols of every arity. We will also deal with different classes of predicates
(or properly: classes of interpretation of predicates). The chosen predicates will restrict the
symbols of the infinite signature that can be used. For F a fragment and P a class of predicates,
we symbolise the class of languages of sentences in F under an interpretation in P by F[P]. We
are deeply concerned with the expressive power of classes of languages of this form. First and
foremost, we have to expose the main examples of fragments and predicates.

1.3. Monadic second-order logic 19

Predicates. The most basic class of predicates is the class consisting only of the order relation
<. It has been extensively studied for its tight relationship with regular languages. The class of
all successor predicates x = y + k, with the maximal x = max−k and minimal x = k predicates is
denoted by loc. There is also mod, the class of all modular predicates for every parameters q and
r.

We will write arb for the set of all the possible numerical predicates. Notice that it is an
extremely large class, that even encompasses undecidable behaviours.

Example 1.14.
Assume we have an enumeration of all the Turing machines. The predicate Halt(x) of arity
one, which is the set of all integers n such that the nth Turing machine halts, belongs to the
class arb. With this very predicate, we can express the (not so natural) language of words with
an a at a position that corresponds to a halting Turing machine with the formula:

∃x, a(x)∧Halt(x).

One last essential class is the one of regular predicates reg. A predicate is regular if it is
definable by a finite automaton. Explicitly, a predicate P of arity k is regular if there exists an
automaton A over {a} × 2{x1,...,xk } such that (i1, . . . , ik) is in the nth numerical relation of P if and
only if the word

(a,A1) · · · (a,An) with x1 ∈ Ai1 , . . . ,xk ∈ Aik
is accepted by A. Thanks to the tight links between MSO and regular languages, Straubing
[124] and Péladeau [91] have shown that regular predicates can be expressed with very simple
formulae. Observe that a formula with k free first-order variables, no free second-order variables
and no letter predicates can be used to define a numerical relation of arity k.

Theorem 1.15 (Straubing [124], Péladeau [91]).
A predicate is regular if and only if it is definable by a quantifier-free formula of MSO[<
, loc,mod] without any letter predicate.

This implies that we can simplify the signature of fragments that satisfy a slight property.
Namely, take F a fragment and ϕ a formula of F. Assume replacing any atomic subformula in ϕ
by a Boolean combination of atomic formulae gives a formula that remains in F. Then we have
that:

F[reg] = F[<, loc,mod].

Fragments. We have already seen the fragments MSO itself and FO. For the purpose of this
document, we will only define fragments that are restrictions or extensions of first-order logic,
but always without second-order quantifications.

It is possible to restrict the number of variables that a formula can access, that is to say that
we restrict V1 to be of bounded size. Note that it is not a bound on the number of quantifications,
as a same variable name can be reused several times in different scopes. Actually, it is equivalent
to assert that every subformula has a bounded number of free variables. To illustrate this, the
formula

∃x, a(x)∧ (∃y, y < x∧ (∃x, x < y))

20 CHAPTER 1. Automata and Logic

has three quantifications but only uses two variables (the first two occurrences of x are bound to
the first quantifier while the last occurence is bound to the second quantifier). It expresses the
fact that there is a letter a that is not in the first two positions of a word.

For k an integer, we denote by FOk the set of FO formulae that use at most k variables. The
most interesting among these fragments is FO2. Indeed, FO1 is very weak and cannot express
many languages. In particular, it can only use unary numerical predicates, and impose conditions
about the letters and their positions but nothing about the global structure of the word. Another
reason is that three variables are often enough to express every language.

Fact 1.16 (Kamp [68]).
The following equality is true:

FO3[<] = FO[<].

In another direction, one could want to design fragments that reflect the complexity of a
formula. One could think about limiting the number of quantifications in a formula. This
approach does not define meaningful fragments. Undoubtedly, in natural language, a formula
with a thousand existential quantifiers will be easier to understand that a formula with a
single existential quantifier nested with a universal quantifier. This is why it is the number of
alternations between the two types of quantifiers that is measured.

A formula is in prenex normal form if it is constructed with the application of all the quantifi-
cation rules last. It looks like:

∃x1x2x3 · · · ∀y1y2y3 · · · · · · ∃z1z2z3 · · · ϕ

where ϕ is quantifier-free. It is well known that any formula can be put in prenex normal form
with some very simple syntactic manipulations. The number of alternations of such a formula is
the number of times an existential quantifier is followed by a universal one (and vice versa).

Definition 1.17.
For k an integer, we define the following fragments:

• Σk is the set of formulae that can be put in prenex normal form that starts with an
existential quantifier and only have k − 1 quantifier alternations.

• Πk is the set of formulae that can be put in prenex normal form that starts with a
universal quantifier and only have k − 1 quantifier alternations.

• BΣk is the set of Boolean combinations of Σk formulae.

Both Σ0 and Π0 are defined as the fragment of quantifier-free formulae. For every i we have
the inclusions

Σi ⊆ BΣi ⊆ Σi+1.

For every integer i, we furthermore define the fragment ∆i as the sentences that can be
written both as a Σi sentence and a Πi sentence. This is not purely syntactic, so for P a class of
numerical predicates, we define

∆i[P] = Σi[P]∩Πi[P].

We can interweave several already defined fragments to form new ones. The composition of

1.3. Monadic second-order logic 21

two fragments F1 and F2 is defined as the set of sentences of F1 that only uses formulae from F2
as atomic formulae. It is denoted as F1 ◦F2.

More quantifiers. One last approach to modify the expressivity of a logic is to enhance its
syntax with new quantifiers. We will exclusively consider such quantificators over first-order
variables. For instance, we can add a modular quantifier ∃q,r for every integers q and r. We
call MSO + MOD the set of formulae that can be obtained with the inductive procedure of
Definition 1.8 and the additional rule

∃q,rxϕ is a formula for x ∈ V1 and ϕ a formula.

We extend the semantic of Definition 1.10 with:

w |=I ∃q,rϕ whenever the number of i such that (a1,A1,B1) · · · (ai ,Ai ∪ {x},Bi) · · · (an,An,Bn) |=I ϕ
holds is congruent to r modulo q.

If we restrict the modular quantifiers used to only check constraints modulo integers in a set
X, we call the logic MSO + MOD[X].

Example 1.18.
In (MSO + MOD)[<], the formula

∃x, ∃2,0y, x < y ∧ a(y)∧b(x)

expresses the regular language of words with a b followed by an even number of a’s.

We can take a step further by introducing a highly general class of quantifiers. These are
called regular Lindström quantifiers, in honor of Lindström [76] who studied them in the first
place. We will restrict our attention to such quantifiers that entail regular properties. That is, we
have a new quantifier for every regular language L over the alphabet {0,1}. We can add to the
syntax the rule:

∃Lxϕ is a formula for x ∈ V1 and ϕ a formula.

Let w = (a1,A1,B1) · · · (an,An,Bn) be a (V1,V2)-structure, x ∈ V1 and ϕ a formula. Let u be the
word of size n over {0,1} that records in which position x can be assigned so that ϕ holds, that is
for 1 ≤ i ≤ n

ui = 1 if and only if (a1,A1,B1) · · · (ai ,Ai ∪ {x},Bi) · · · (an,An,Bn) |=I ϕ.

With that, we can complete the satisfaction rules with

w |=I ∃Lϕ whenever u ∈ L.

Example 1.19.
It is possible to catch all of the already defined quantifiers in the scope of regular Lindström
quantifiers. The following table gives the equivalence between the standard quantifiers and
the languages to see them as regular Lindström quantifiers.

22 CHAPTER 1. Automata and Logic

Quantifier Lindström for L =
∃ (0 + 1)∗1(0 + 1)∗

∀ 1∗

∃q,r ((0∗10∗)q)∗(0∗10∗)r

Let C be a class of regular languages. We denote by MSO + C the set of formulae that can be
obtained with the addition of regular Lindström quantifiers associated with a regular language
in C.

Property 1.20.
Let L be a regular language and ϕ be a formula of MSO[<]. Then ∃Lxϕ is equivalent to a
formula of MSO[<].

Proof. Let ψL be the MSO[<] sentence that exists by Theorem 1.11 such that, for every word w,
w |= ψL if and only if w ∈ L. We want to build a formula with two free second-order variables
ψ′(X0,X1) such that a (V1,V2)-structure

(a1,A1,B1) · · · (an,An,Bn) such that exactly one of X0 or X1 belongs to every Bi

satisfies ψ′ if and only if the word u that has a 1 exactly in the positions i with X1 ∈ Bi belongs
to L. To define this formula, we syntactically replace every occurrence of the letter predicates
0(x) (resp. 1(x)) in ψL by x ∈ X0 (resp. x ∈ X1). With this definition, the formula equivalent to
∃Lxϕ is

∃X0,X1, (∀x, ϕ(x)⇒ x ∈ X1 ∧¬ϕ(x)⇒ x ∈ X0)∧ψ′L(X0,X1).

The first part of the formula gives that X0 and X1 have to partition the positions in a word,
and that X1 (resp. X0) contains all the positions such that ϕ (resp. ¬ϕ) holds. We can conclude
thanks to the definition of regular Lindström quantifier. □

This entails that when a class of predicates P contains <, adding regular Lindström quantifiers
to MSO is useless:

(MSO + Reg)[P] = MSO[P].

However, it might be interesting to add extra quantifiers to smaller fragment of MSO, like FO.
This is why we denote by Lin(C) the set of sentences that uses only Lindström quantifications in
C. We also denote by FO + C the first-order formulae that can use Lindström quantifications in C.
It is equal to Lin(C′) where C′ is C enhanced with 1∗ and 0∗10∗.

Bibliography of the current chapter

[21] J. Büchi. “Weak Second-Order Arithmetic and Finite Automata”. In: Mathematical Logic
Quarterly 6 (1960). doi: 10.1007/978-1-4613-8928-6_22.

[29] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications.
2008. doi: https://inria.hal.science/hal-03367725.

[39] Ronald Fagin. “Generalized first-order spectra, and polynomial time recognizable sets”.
In: SIAM-AMS Proc. 7 (Jan. 1974).

https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/https://inria.hal.science/hal-03367725

Bibliography of the current chapter 23

[62] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[68] Hans Kamp. “Tense Logic and the Theory of Linear Order”. PhD thesis. Ucla, 1968.

[69] SC Kleene. “Representation of events in nerve nets and finite automata”. In: Automata
Studies: Annals of Mathematics Studies. Number 34 34 (1956).

[76] Per Lindström. “First Order Predicate Logic with Generalized Quantifiers”. In: Theoria
32.3 (1966). doi: 10.1111/j.1755-2567.1966.tb00600.x.

[79] Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T. research
monograph no. 65). The MIT Press, 1971.

[83] Anil Nerode. “Linear automaton transformations”. In: Proceedings of the American Mathe-
matical Society 9.4 (1958).

[86] Yannis Papakonstantinou and Victor Vianu. “DTD inference for views of XML data”. In:
Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. PODS ’00. New York, NY, USA: Association for Computing Machinery,
May 2000. doi: 10.1145/335168.335173.

[91] Pierre Péladeau. “Logically defined subsets of Nk”. In: Theoretical Computer Science 93.2
(1992). doi: 10.1016/0304-3975(92)90328-D.

[94] Jean-Eric Pin. Handbook of Automata Theory. EMS Press, 2021. doi: 10.4171/automata.

[124] Howard Straubing. “Constant-depth periodic circuits”. In: International Journal of Algebra
and Computation 01.01 (1991). doi: 10.1142/S0218196791000043.

[130] Wolfgang Thomas. “Languages, Automata, and Logic”. In: Handbook of Formal Languages:
Volume 3 Beyond Words. Ed. by Grzegorz Rozenberg and Arto Salomaa. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997. doi: 10.1007/978-3-642-59126-6_7.

https://doi.org/10.1111/j.1755-2567.1966.tb00600.x
https://doi.org/10.1145/335168.335173
https://doi.org/10.1016/0304-3975(92)90328-D
https://doi.org/10.4171/automata
https://doi.org/10.1142/S0218196791000043
https://doi.org/10.1007/978-3-642-59126-6_7

24 CHAPTER 1. Automata and Logic

Chapter2
Algebra and Topology

Outline of the current chapter

2.1 Finite monoids 26
2.2 Varieties of finite monoids 29

2.2.1 Languages and monoids . 29
2.2.2 Principal varieties of monoids. 30

2.3 Ordered monoids 31
2.4 Adding regular predicates 33

2.4.1 C-varieties . 33
2.4.2 Wreath product . 35
2.4.3 Interplay with logic . 36

2.5 The profinite realm 38
2.5.1 Reminders of topology . 39
2.5.2 The profinite topology . 39

2.6 Forest algebras 41

An automaton, when the information about which states are initial and final is dropped, only
consists of several functionsQ→Q. There is one such function for every word, and together they
form an algebraic structure called a monoid. These monoids unravel the combinatorial structure
of the automaton and expose many of its properties. Hence, it alleviates the cost of looking at
combinatorial properties hidden in an automaton by only looking at a mere algebraic object.
Moreover, monoids are objects already subject to a rich literature that is therefore available for
the study of regular languages. In particular, Green’s relations [49] play a significant role. In
this spirit, Schützenberger [112] showed how to canonically associate a monoid, to any regular
language, that reflects properties of the language. He used these techniques to show that star-free
languages can be described thanks to a simple property on their syntactic monoids [113]. It
opened the door to a general study of equivalences between classes of languages and classes of
monoids. For instance, Simon [119] exhibited a class of monoids that corresponds to the class of
piecewise-testable languages, that is to say languages defined by the subwords that can appear
in a word. Since then, a line of research is devoted to find classes of monoids that corresponds to

25

26 CHAPTER 2. Algebra and Topology

given languages. Later, Eilenberg [37] introduced a general correspondence between classes of
languages and classes of monoids that both enjoy several closure properties. Topology plays as
well an important role in automata theory. Profinites spaces are topological spaces that contain
all the information of finite monoids. They can be constructed through the general prism of
Stone duality [42]. It creates a robust equational theory that provides a set of equations on
a profinite space to describe any variety of monoids. See [95] for an introduction by Pin to
algebraic automata theory and [97] for a survey by Pin on topological methods in automata
theory.

A corresponding theory exists for tree automata, although it is generally considered less
extensive compared to its counterpart for word automata. See [18] for a review by Bojańczyk on
algebras for trees.

2.1 Finite monoids

We start by introducing our first algebraic object.

Definition 2.1.
A monoid is a tuple (M, ·) where M is a set and · :M ×M→M is a binary operation on M. It
has to satisfy:

• · is associative: for every x,y,z ∈M, we have (x · y) · z = x · (y · z),
• M has an identity: there is an element 1 ∈M such that for every x ∈M,1 · x = x · 1 = x.

We will almost never refer explicitly to the operation and denote a monoid by its set M.
The identity can also be named the neutral element. A semigroup is a monoid without the
requirement about the existence of an identity. A zero in a monoid M is an element 0 such that
for every x ∈ M,0 · x = x · 0 = 0. An element x is invertible if there is an element y such that
x · y = y · x = 1. A monoid in which every element is invertible is called a group. For an element x
and an integer k, xk is the element x · · · · · x where the operation is applied k times. We say that
xk is a power of x. An idempotent is an element e ∈M such that e2 = e.

Fact 2.2.
Let M be a monoid and x ∈M. There exists a unique idempotent that is a power of x. It is
denoted by xω.

Let M and N be two monoids. A morphism from M to N is a function µ from M to N that is
preserving in the sense that:

∀x,y ∈M, µ(x · y) = µ(x) ·µ(y).

We say that N is a submonoid of M if there exists an injective morphism from N to M. In this
case, N is naturally identified with a subset of M. We say that N is a quotient of M if there exists
a surjective morphism from M to N . We say that N divides M if N is the quotient of a submonoid
of M. If X is a subset of M, the submonoid of X generated by X is the smallest submonoid of M
that contains X.

2.1. Finite monoids 27

Example 2.3.
Let A be a finite set. The set of words A∗ endowed with the concatenation operation is a
monoid. Its neutral element is ε, the empty word.

This very important example is called the free monoid over A.

Except for free monoids, all the monoids we consider are finite. We will now see how
monoids relate to regular languages. To this extent, we need to introduce three notions linked to
languages.

Recognisability. A language L over A is said to be recognised by a monoid M if there exists a
morphism µ from A∗ to M and a subset P of M such that

L = µ−1(P).

Transition monoids. Let A = (Q,A,δ, I,F) be a deterministic finite automaton. We can see that
the monoid F (Q) of all functions from Q to Q with the composition of functions as operation is
a monoid. The transition monoid of A is the submonoid of F (Q) generated by the functions δa
for every letter a.

Syntactic monoids. A congruence on a monoid M is an equivalence relation ∼ such that for
every x,y,z, t ∈M,

x ∼ y and z ∼ t implies x · z ∼ y · t and z · x ∼ t · y.

With such an object, we can build a new monoid M/ ∼ whose base set is the set of equivalence
classes of ∼. Its operation between two equivalence classes is the class of the product of any two
chosen representatives. Let L be a language. Its syntactic congruence is the relation ∼L on A∗

defined by:
u ∼L v if ∀x,y ∈ A∗, xuy ∈ L⇔ xvy ∈ L.

Its syntactic monoid is ML = A∗/ ∼L. The syntactic morphism µL is the morphism that maps a word
in A∗ to its equivalence class in ML.

There are very strong links between regular languages and finite monoids.

Theorem 2.4.
Let L be a language. Then L being regular is equivalent to:

• L is recognised by a finite monoid,
• the syntactic congruence ∼L has finitely many equivalence classes,
• the syntactic monoid ML is finite.

Moreover, in this case, the syntactic monoid and the transition monoid of the minimal
automaton of L are the same.

Ideal structure. Let M be a monoid. A left ideal I is a subset of M such that for x ∈M and y ∈ I ,
x · y ∈ I . A right ideal I is a subset of M such that for z ∈M and y ∈ I , y · z ∈ I . A two-sided ideal I
is a subset of M such that for x,z ∈M and y ∈ I , x · y · z ∈ I . Ideals generated by an element are of
particular interest. For x ∈M, its left, right, and two-sided ideals are respectively M ·x, x ·M and
M · x ·M.

28 CHAPTER 2. Algebra and Topology

The Green’s relations, introduced by Green [49], are a crucial tool in the understanding of
monoid structure.

Definition 2.5.
Let M be a monoid. We define four orders on M. Let x,y ∈M,

• x ≤R y whenever xM ⊆ yM,
• x ≤L y whenever Mx ⊆My,
• x ≤J y whenever MxM ⊆MyM,
• x ≤H y whenever x ≤R y and x ≤L y.

This allows to define the four Green’s relations:

• xRy whenever x ≤R y and y ≤R x,
• xLy whenever x ≤L y and y ≤L x,
• xJ y whenever x ≤J y and y ≤J x,
• xHy whenever x ≤H y and y ≤H x.

This definition alone does not give much. We need a few statements to really grasp its value.
First of all, we know that all the H-classes that contain an idempotent are groups. Note that
Green’s relations refine each other along the graph:

H R

L J

⊆⊆
⊆
⊆

1We can therefore mention R-classes and L-classes in a J -class, and H-classes in any other
type of Green’s class. Green’s lemma highlights the structure of a J -class.

Lemma 2.6 (Green).
Let J be a J -class in a monoid M.

(i) All the H-classes with an idempotent are isomorphic groups.
(ii) For every x,y ∈ J , the intersection of the R-classes of x and the L-class of y is not empty.

(iii) There is a bijection between every couple ofR-classes (resp L-classes) of J . that preserves
the H-classes.

We can therefore represent any J -class as a rectangular grid in which columns represent
L-classes, lines R-classes and cells are H-classes. Indeed, (iii) implies that all of the R-classe
inside a J -class have the same number of distinct L-classes. By (ii), we can arrange the elements
of two R-classes to make the L-classes match. Moreover, all the cells have the same size. The
egg-box diagram of a monoid is a nice representation of the monoid that emphasises the ideal
structure. Each J -class is represented as a rectangular grid and is sorted up to bottom respecting
the ≤J order.

Example 2.7.
We give the egg-box diagram of the syntactic monoid of b((aa)∗bc)∗. It has been computed
with Paperman’s tool Semigroup Online [88]. Elements in red are idempotents.

2.2. Varieties of finite monoids 29

A striking feature of Green’s relations is that the product xy of two elements is always J -
smaller than both x and y. It means that when we are doing a product of many monoid elements,
the intermediary results only go to the bottom of the egg-box diagram.

2.2 Varieties of finite monoids

2.2.1 Languages and monoids

When investigating a complexity class, the best scenario for describing its regular languages is
when we can reduce the problem to an algebraic one. In this case, we have to find a property P
about monoids such that a regular language is in the complexity class if and only if its syntactic
monoid satisfies P . But for this method to work, the syntactic monoid has to faithfully reflect the
property under study. This is why our language classes have to be well-behaved. By a language
class, we mean a function that maps an alphabet A to a set of languages over A∗.

Definition 2.8.
A language class V is a variety if it satisfies, given A and B two alphabets:

• for L,M∈ V (A), all of L∩M, L∪M and Lc belong to V (A),
• for L ∈ V (A) and a morphism µ : B∗→ A∗, then µ−1(L) is in V (B),
• for L ∈ V (A) and u ∈ A∗, both u−1L and Lu−1 are in V (A).

If a language class V is a variety, then given a language L, we can check if L ∈ V by only
computing its syntactic monoid. The class of monoids recognising languages in L also possesses
similar closure properties. We define the direct product of two monoids M and N as the monoid
whose base set is the Cartesian product M ×N of M and N and whose operation is (x,y) · (x′ , y′) =
(xx′ , yy′).

30 CHAPTER 2. Algebra and Topology

Definition 2.9.
Let V be a set of finite monoids. We say that V is a variety of monoids whenever:

• if M,N ∈V, the monoid M ×N is in V,
• if M ∈V and N divides M, then N is in V.

Eilenberg [37] exhibited a sturdy connection between varieties of languages and varieties of
monoids. Let TMonoids be the function that associates to a variety of languages V the variety of
monoids generated by the syntactic monoids of languages in V . Let TLanguages be the function
that associates to a variety of monoids V the variety of languages that are recognised by a monoid
in V.

Theorem 2.10 (Eilenberg [37]).
The two functions TMonoids and TLanguages are bijections, and are inverses of each other.

2.2.2 Principal varieties of monoids.

This subsection is devoted to enumerating the varieties of monoids we will encounter in this
document. We will also mention the relationship between some of these classes and logical
fragments of MSO[<].

Aperiodic monoids. A monoid is said to be aperiodic if all of its H-classes are of size one. It
is equivalent to ask that any subsemigroup that is a group is of size one. We denote by A the
variety of all aperiodic monoids. This variety is known to correspond to the star-free languages,
and therefore to the logic FO[<].

Groups. The variety of all monoids that are groups is denoted by G. Morally, this variety
corresponds to languages that can be computed with a reversible computation. Indeed, this
language class is exactly the class of regular languages that can be computed by a deterministic
complete automaton whose transition functions are injective.

Idempotent and commutative monoids. We call J1 the variety of monoids that are commutative
and whose elements are all idempotent. It is a very limited variety. It corresponds to FO1[<], the
one variable restriction of FO.

{R,L,J }-trivial monoids. Green’s relations are determinant in the study of finite monoids, it
is legitimate to check that monoids with restrictions on their Green’s relations are varieties. If a
monoid only has J (resp. L, R) classes of size one, we say that it is J (resp. L, R) trivial, and we
denote the corresponding variety by J (resp. L, R). The variety of J -trivial monoids has been
studied by Simon [119] who showed that they correspond to the BΣ1[<] logic.

DA. One last variety is the variety of aperiodic monoids such that all J -classes that contain
one idempotent only contain idempotents. In terms of logic, it is known to correspond to FO2[<].
It is a very fruitful variety that has been extensively studied. An excellent survey on the matter
is due to Tesson and Thérien [129].

2.3. Ordered monoids 31

The following schema summarises the dependencies amongst all those classes. The variety G
is not comparable to any of the other varieties and is therefore not shown.

J1 J

R

L

DA A⊆ ⊆

⊆ ⊆

⊆
⊆

1

2.3 Ordered monoids

It happens that a class of interest is not closed under complementation. It is for instance the case
when considering logics like Σi or Πi , as the negation of a formula that starts with an existential
quantifier will start with a universal quantifier. A positive variety of languages V is defined
exactly like a variety but without the condition that Lc ∈ V (A) whenever L ∈ V . This led Pin [92]
to define a new type of algebraic object for which there is an Eilenberg-like theorem.

Ordered monoids. An ordered monoid is a couple (M,≤) where M is a monoid and ≤ is an order
on M that satisfies:

for all x,y,z ∈M, then x ≤ y implies xz ≤ yz and zx ≤ zy.

An upset (resp. downset) is a set P such that y ∈ P whenever x ≤ y (resp. y ≤ x) for some x ∈ P .
A morphism of ordered monoids µ is a monoid morphism from M to N with the additional
requirement that

x ≤ y implies µ(x) ≤ µ(y).

We can see the free monoid over an alphabet A has an ordered monoid with the trivial order:
x ≤ y if and only if x = y.

An important operation on ordered monoids is duality. For (M,≤) an ordered monoid, its
dual is the ordered monoid (M̃, ≤̃) defined by:

M̃ =M and x≤̃y⇔ y ≤ x.

Recognisability. A language L is said to be recognised by an ordered monoid M if there exists
an ordered monoid morphism µ from A∗ to M and an upset P of M such that:

L = µ−1(P).

With this definition, a same ordered monoid can recognise a language but not its complement.
Indeed, the complement of an upset is not a priori an upset.

Example 2.11.
The following monoid (given as an egg-box diagram) recognises the language (ab)∗. The order
is given by ab ≤ 1, ba ≤ 1 and bb is smaller than anyone else. The accepting upset is P = {1, ab}.

32 CHAPTER 2. Algebra and Topology

We can see that the complement of (ab)∗ is not recognised by this ordered monoid. Indeed,
it would be recognised by P = {b,ba,a,bb}, which is not an upset.

With the knowledge that the complement of an upset is a downset, and is therefore an upset
regarding the dual order, we have that for an ordered monoid (M,≤) and a language L,

L is recognised by (M,≤) if and only if Lc is recognised by (M̃, ≤̃).

Syntactic ordered monoid. There is an ordered analogue to the syntactic monoid, defined in
the same fashion. Let L be a regular language over A. Its syntactic order is the order ≤L described
by:

u ≤L v if ∀x,y ∈ A∗, xuy ∈ L⇒ xvy ∈ L.

We can find again the syntactic congruence:

u ∼L v if and only if u ≤L v and v ≤L u.

So the syntactic ordered monoid of L is defined as (ML,≤L) where ML is the syntactic monoid of
L.

Computation. To compute the syntactic ordered monoid of a language, it is enough to calculate
its minimal automaton A = (Q,A,δ, I,F) first, then take its transition monoid. The syntactic
order is given as, for two transition functions δ1 and δ2:

δ1 ≤L δ2 whenever for all transition function δ3 and q ∈Q, δ3(δ1(q)) ∈ F⇒ δ3(δ2(q)) ∈ F.

Positive varieties of monoids. The classical operations on monoids are possible as well with
ordered monoids. Let (M,≤1) and (N,≤2) be two ordered monoids. The direct product of M and
N is (M ×N,≤) where x ≤ y stands for x ≤1 y and x ≤2 y. The notion of submonoid, quotient and
division carries to the ordered setting, with the supplementary condition that the morphisms
are between ordered monoids. Like before, a set of finite ordered monoids V is a positive variety
of monoids if it is stable by direct product and division.

We have an Eilenberg theorem for ordered monoids. Let T +
Monoids be the function that

associates to a positive variety of languages V the positive variety of monoids generated by the
syntactic ordered monoids of languages in V . Let T +

Languages be the function that associates to a
positive variety of monoids V the positive variety of languages that are recognised by an ordered
monoid in V.

2.4. Adding regular predicates 33

Theorem 2.12 (Pin [92]).
The two functions T +

Monoids and T +
Languages are bijections, and are inverses of each other.

We can therefore try to identify the classes of languages and ordered monoids of some logical
classes. For instance, for any integer i, the class Σi[<] is a positive variety of languages.

Fact 2.13.
It is known that the languages in Σ1[<] are exactly those with 1 as a maximum in their
syntactic ordered monoid. This positive variety of ordered monoids is known as J+.

We also have a notion of duality for positive varieties of monoids. For V a positive variety of
monoids, we denote by Ṽ its dual: the positive variety of all duals of monoids in V. Regarding
languages, the dual variety recognises precisely all the complements of languages recognised by
V.

2.4 Adding regular predicates

We have described tools to handle, for F a fragment, many classes of the form F[<]. For instance,
FO[<] is a variety of monoids. But these tools are not powerful enough to deal with the presence
of every regular predicates.

Example 2.14.
The regular language (aa)∗ (over a one letter alphabet) is in FO[<,mod] thanks to the formula:

∃x,x ≡2 0∧ (∀y,y > x⇒ y = x).

This formula ensures that the last letter is at en even position. Its syntactic monoid is the
group Z/2Z with two elements. Hence it is not aperiodic, and not in FO[<]. Moreover, let
µ : {a,b}∗→ {a}∗ be the morphism defined by µ(a) = a and µ(b) = aa. We have that µ−1((aa)∗) =
(b∗ab∗ab∗ + b)∗. With the developments of this section, we will be able to show that this
language is not in FO[<,mod]. This implies that FO[<,mod] is not a variety of languages. In
can also be seen with the fact that (aa)∗ and (b∗ab∗ab∗)∗ + b have the same syntactic monoid.
Regardless, they can be differentiated by their syntactic morphisms.

2.4.1 C-varieties

Example 2.14 illustrated the fact that the framework of varieties of monoids was not precise
enough for our purposes. Pin and Straubing [99] came with the notion of C-varieties to capture
more phenomena. As advertised, we work with morphisms.

Let µ : A∗→ B∗ be a morphism between two free monoids. We say that it is:

• non-erasing if the image of every letter is not the empty word,
• length-preserving if the image of every letter is a letter,
• length-multiplying if the image of every letter has the same size and is not empty.

34 CHAPTER 2. Algebra and Topology

In the following, C is a class of morphisms that contains all length-preserving morphisms
and is closed under composition. In practice, C will either be the class of all morphisms all, the
class of non-erasing morphisms ne or the class of length-multiplying morphisms lm.

Definition 2.15.
Let C be a class of morphisms. A language class V is a C-variety if it satisfies, for A and B two
alphabets:

• for L,M∈ V (A), all of L∩M, L∪M and Lc belong to V (A),
• for L ∈ V (A) and a morphism µ : B∗→ A∗ in C, then µ−1(L) is in V (B),
• for L ∈ V (A) and u ∈ A∗, both u−1L and Lu−1 are in V (A).

Once again, Example 2.14 highlights that monoids cannot capture such varieties and we have
to consider morphisms instead. A surjective morphism from a free monoid to a finite monoid is
called a stamp. Syntactic morphisms are examples of stamps. We define operations on stamps,
analogously to monoids. Let µ : A∗→M and ν : B∗→ N be two stamps. A C-morphism from µ
to ν is a couple (α : A∗→ B∗,β : M → N), where α is in C and β ◦ µ = ν ◦α. It is a C-quotient if
α(A) = B, and a C-inclusion if β is injective. The stamp µ C-divides ν if there exists a third stamp
which is a C-inclusion for µ, and a C-quotient for ν. If A = B, the product µ × ν is the stamp
θ : A∗→O such that for a letter a, θ(a) = (µ(a),ν(a)) and O is the submonoid of M ×N generated
by the elements θ(a). We can now state what is a C-variety of stamps.

Definition 2.16.
Let C be a class of morphisms. Let V be a set of stamps. We say that V is a C-variety of stamps
whenever:

• for M,N ∈V, the stamp M ×N is in V,
• for M ∈V and N that C-divides M, then N is in V.

Note that being a variety of monoids and an all-variety of stamps is exactly the same. There
is an equivalent of Eilenberg theorem for C-varieties of languages and C-varieties of stamps [99],
as well as an equational theory.

An ordered stamp is simply a morphism A∗→ (M,≤) from a free monoid into a finite ordered
monoid. As mentionned in [99], we have again a correspondance between positive C-varieties of
languages and C-varieties of ordered stamps.

Semigroups. For ne-varieties of stamps, there exists another algebraic object with the same
recognisability power: semigroups. The relation between the two has been studied by Pin and
Straubing in [99, lemma 7.3]. A variety of semigroups if a set of semigroups closed under product
and division (of semigroups). There is a natural bijection between the two notions of varieties,
and they capture the same languages. For S a semigroup, the associated stamp is µ : A∗→ S1

where S1 is S with a neutral element added if needed. For µ : A∗→M a stamp, the associated
semigroup is µ(A+). Thanks to that, all the theory afterward could be developed with ne-variety
of stamps replaced by variety of semigroups (and ne-variety of ordered stamps replaced with
variety of ordered semigroups).

2.4. Adding regular predicates 35

2.4.2 Wreath product

Adding predicates P into a logic F[σ] corresponds morally to adding the computational power
of P into a processed word, before feeding it into a F[σ] formula. The corresponding automata
notion is the cascade of automata.

Definition 2.17.
LetA = (Q,A,δ, i,F) andA′ = (Q′ ,A×Q,δ′ , i′ ,F′) be two deterministic automata. Their cascade
is the automaton A′ ◦A = (Q ×Q′ ,A,δ′′ , (i, i′),Q ×F′) where, for a ∈ A, q ∈Q and q′ ∈Q′ :

δ′′a (q,q′) = (δa(q),δ′(a,q)(q
′)).

Intuitively, the cascade takes a word u, enhance it with the information given by the com-
putation in A, and finally process it with A′ . The wreath product is the algebraic counterpart of
the cascade operation on automata. Given two monoids M and N , we denote by MN the set of
functions from N to M.

Definition 2.18.
Let M and N be two monoids. The wreath product of M by N , denoted by M ◦N is the
monoid with base set MN ×N and operation

(f ,x) · (g,y) = (z 7→ f (z)g(xz),xy).

For V and W two varieties of monoids, we denote by V ∗W the variety of monoids generated
by the monoids of the form M ◦N where M ∈V and N ∈W. Both notions are related thanks to
the celebrated wreath product principle of Straubing [125].

Theorem 2.19 (Straubing [125]).
Let V and W be two varieties of monoids. LetW and U be the varieties of languages associated
with V and V ∗W. Then U is the smallest variety of languages such that U (A) containsW (A)
and every language computed by A′ ◦A where A has a transition monoid in W and A′ has a
transition monoid in V.

The cascade operation and the wreath product, as well as the wreath product principle, can
be extended to make sense for stamps [26] and ordered structures [101]. This operation is crucial
in monoid theory. For instance, the celebrated Krohn-Rhodes theorem [74] states that every
monoid divides a wreath product of very simple monoids.

Theorem 2.20 (Krohn, Rhodes [74]).
Let M be a monoid. Then M divides a wreath product of the form

M1 ◦ · · · ◦Mn

where every Mi are either:

36 CHAPTER 2. Algebra and Topology

• a simple group, that is to say a group that cannot be written as the product of two
smaller groups,

• U2, the syntactic monoid of (a+ b)∗a.

An important open problem is to decide the minimal number of groups needed for a monoid
M to divide a wreath product as in the theorem. We define two varieties of stamps with which
wreath products will be applied.

Right trivial stamps. We will be interested in stamps µ : A∗ →M such that for all u and v
non-empty words, the identity

µ(v)µ(u)ω = µ(u)ω

stands. We call such a stamp right trivial. The class of all such stamps is a ne-variety, and
is denoted by D. For V a variety of (ordered) monoids, we denote by V ∗D the ne-variety of
(ordered) stamps generated by the stamps of the form M ◦N where M ∈V and N ∈D.

Modular stamps. For q an integer, the q-modular stamp is the stamp from {a}∗ to Z/qZ that
computes the length of a word modulo q. The lm-variety MODq is the lm-variety of stamps
generated by the q-modular stamps. The lm-variety MOD is the union

⋃
q∈N MODq. For V

a ne-variety of (ordered) stamps, we denote by V ∗MOD the lm-variety of (ordered) stamps
generated by the stamps of the form M ◦N where M ∈V and N ∈MOD.

2.4.3 Interplay with logic

We refer the reader to [87] for a complete study of the additon of regular predicates into a
signature.

Local letter predicates. Adding local predicates is not always an easy task. This is why we
introduce a new class of predicates that are not numerical. The local letter predicates, for an
integer k, are denoted by a−k and are interpreted as, with w a (V1,V2)-structure,

w |=I a−k(x) whenever w has a letter (a,A,B) with x − k ∈ A.

We also define a(max−k) to be true if the kth letter from the end of the word is an a. Altogether,
they form the class of local letter predicates locα . Thanks to their unary arity, they will be well
suited for an algebraic study. For F a fragment, we will allow writing F[locα] like with the
addition of numerical predicates. In many cases, adding local numerical predicates or local letter
predicates give the same result.

Fact 2.21 (Paperman [87, Proposition 3.23]).
Let i ∈N. Adding local numerical predicates or local letter predicates to the following logics
give the same languages: Σi[<],BΣi[<],FO2[<].

Wreath products. We first consider the action of adding the local predicates into a signature.
The wreath product by D corresponds to the addition of the local letter predicate.

2.4. Adding regular predicates 37

Theorem 2.22 (Folklore, see [87, Thm 1.13, Thm 3.28]).
Let F be a fragment such that F[<] is a (positive) variety of languages associate to the variety
of (ordered) monoids V. Then F[<, locα] is a (positive) ne-variety of languages associated to
the ne-variety of (ordered) stamps V ∗D.

We then consider the adddition of modular predicates into a signature. The wreath product
by MOD corresponds to the addition of modular predicates. We phrase it to match our purpose
of capturing regular predicates.

Theorem 2.23 (Folklore, see [87, Thm 1.13, Thm 4.28]).
Let F be a fragment such that F[<, loc] is a (positive) ne-variety of languages associated to the
ne-variety of (ordered) stamps V. Then F[reg] is a (positive) lm-variety of languages associated
to the lm-variety of (ordered) stamps V ∗MOD.

Deciding membership in a variety of the form V ∗D or V ∗MOD is notoriously difficult, even
if we have the decidability of V. However, in some cases, there is a property that can be proved
on V to simplify membership on V ∗D and V ∗MOD.

Local monoids. Let M be a monoid. A local monoid of M is a submonoid of the form eMe
where e is an idempotent. It is indeed a monoid with identity e. Given a variety of monoids
V, a very important class of ne-variety is the set of stamps µ : A∗ → M such that the local
monoids of µ(A∗\{ε}) are all in V. We call this class LV. Membership in LV is decidable as long
as membership in V is.

Stable stamps. Let µ : A∗→M be a stamp. The set µ(A) lives in the monoid of subsets of M,
hence it possesses an idempotent power. The stability index of µ is the smallest integer s such
that

µ(A)s = µ(A)2s.

It implies that µ(As) is a semigroup. We denote by µ(As)1 this semigroup, adjoined with the
identity of M if needed. The stable monoid is the monoid µ(As)1. The stable stamp of µ is the
stamp

µs : (As)∗→ µ(As)1.

For V a variety of monoids, QV is the lm-variety of stamps whose stable monoid is in V. For
V a ne-variety of stamps, QV is the lm-variety of stamps whose stable stamp is in V.

Locality. The condition on V that allow to simplify the variety V ∗D or V ∗MOD is called
locality. It involves category theory and is rather involved, so we will not define it, and only states
that some varieties have this property. We refer the reader to [131, 8] for references. For instance,
A, R, L and DA are known to be local. The first variety shown to be not local is J, even if J ∗D is
decidable. Whenever a local variety is expressive enough to contain J1, locality is transferred to
LV [87, Prop 4.24].

38 CHAPTER 2. Algebra and Topology

Fact 2.24 (Folklore, see [87, Cor 3.32]).
Let V be a variety of (ordered) monoids. Then

V ∗D ⊆ LV.

If moreover V is local then
V ∗D = LV.

In particular when V is local, membership in V ∗D is decidable whenever membership in V is.

We can also deduce from the previous fact that, for a language with a neutral letter, its
syntactic stamp belongs to V ∗D if and only if it belongs to V. The reason behind is that the
image of a neutral letter under the syntactic morphism is the neutral element of the monoid,
and hence the monoid itself is a local monoid.

Fact 2.25 (Paperman [87, Cor 4.29, Cor 4.31]).
Let V be a ne-variety of (ordered) stamps. Then

V ∗MOD ⊆QV.

If moreover V is local then
V ∗MOD = QV.

In particular when V is local, membership in V ∗MOD is decidable whenever membership in
V is.

We can also deduce from the previous fact that for a language with a neutral letter, its
syntactic stamp belongs to V ∗MOD if and only if it belongs to V. It comes from the fact that the
neutral letter can be used to fill in spaces, and therefore the image of every word is in the stable
monoid.

We show how to use these theorems with two classes of languages.

Example 2.26.
With the fact that A and DA are both local and contain J1, we have that

FO[reg] = QA

FO2[reg] = QLDA

The first equality comes from the fact that local predicates can be expressed in first-order
logic, and therefore FO[<, loc] = FO[<].

2.5 The profinite realm

The profinite topology is a wonderful and successful tool to study regular languages. It is a
generalisation of p-adic topologies that were instrumental in number theory. We first need to
recall some topological definitions.

2.5. The profinite realm 39

2.5.1 Reminders of topology

A metric space (X,d) is a set X with a distance d : X ×X→R such that:

• for x ∈ X, d(x,x) = 0,
• for x , y, d(x,y) > 0,
• for x,y ∈ X, d(x,y) = d(y,x),
• for x,y,z ∈ X,d(x,z) ≤ d(x,y) + d(y,z).

The last item is called the triangular inequality.
A Cauchy sequence is a sequence (xn)n∈N such that the elements are arbitrarily close towards

infinity. Formally, for all ε > 0, there exists k ∈N such that for all n,m ≥ k, d(xn,xm) ≤ ε. A metric
space is complete if every Cauchy sequence is convergent. The completion of a metric space (X,d)
is the metric space X̂ defined as follow. Let C(X) be the set of Cauchy sequences over X. We
define a distance d′ of this set as d′((xn), (yn)) = limn→∞ d(xn, yn). Being at distance zero is an
equivalence relation that we denote by ∼. The completion X̂ is defined as (C(X)/ ∼,d′). It can be
shown to be the unique smallest complete metric space containing X, up to isomorphism.

2.5.2 The profinite topology

We say that a monoid M separates two words u and v if there exists a morphism from A∗ to M
for which u and v have distinct images.

Definition 2.27.
We define a metric d on A∗, for u,v ∈ A∗, as

d(u,v) = 2−min{|M | | M separates u and v}.

The free profinite space over A is Â∗, the completion of A∗ for this metric d.

Its elements are Cauchy sequences of finite words (un) such that, for every morphism µ into a
finite monoid, the sequence (µ(un)) is ultimately constant. We call them the profinite words.

Therefore, we can extend any morphism µ : A∗→M into a continuous morphism µ̂ : Â∗→M.
We can endow Â∗ with a product structure to make it a monoid. This is just the pointwise

concatenation of sequences.

Omega-words. Let u ∈ Â∗. The sequence (un!) can be shown to be a Cauchy sequence. This
sequence is an element of the free profinite monoid that we denote by uω, and call the omega-
power of u. It is not random that we chose the symbol ω. Indeed, for all morphism µ into a
finite monoid, µ̂(uω) = µ̂(u)ω stands. The set of profinite words constructed from finite words,
concatenation and omega-power is called the set of omega-words. It is an important subclass of
profinite words thanks to their well-behaved and intuitive behaviour. There are many results
that hold for omega-words that no one is able to show in the general case.

Equations. An identity is a couple of profinite words (u,v). Let M be a monoid, it satisfies
the identity (u,v) if, for all morphisms µ into M, we have µ(u) = µ(v). In the same spirit, let M
be an ordered monoid, it satisfies the ordered identity (u,v) if, for all morphisms µ into M, we
have µ(u) ≤ µ(v). It allows defining varieties (resp. positive varieties) by a set of identities (resp.
ordered identities): it is the set of monoids that satisfy all the identities. Reiterman [109] showed

40 CHAPTER 2. Algebra and Topology

variety identities logic
G xω = 1
J1 xy = yx,x2 = x FO1[<]
J (xy)ωx = (xy)ω = y(xy)ω BΣ1[<]
R (xy)ωx = (xy)ω

L y(xy)ω = (xy)ω

DA (xy)ω(yx)ω(xy)ω = (xy)ω,xω+1 = xω FO2[<]
A xω+1 = xω FO[<]
J+ x ≤ 1 Σ1[<]
J− x ≥ 1 Π1[<]

Figure 2.1: Principal varieties

that every variety of monoids can be defined thanks to a (possibly infinite) set of identities. It
was later extended to the positive setting.

Let V be a variety of monoids and u,v two profinite words. We write u =V v if, for all
morphism µ into a monoid of V, we have µ(u) = µ(v). If V is a positive variety instead, we write
u ≤V v if, for all morphism µ into an ordered monoid of V, we have µ(u) ≤ µ(v).

Theorem 2.28 (Reiterman [109]).
We have that:

• Every variety of monoids V is defined by the set of identities (u,v) such that u =V v.
• Every positive variety of monoids V is defined by the set of identities (u,v) such that
u ≤V v.

Such an equational characterisation can be very handy when dealing with decidability
problems. Indeed, when a variety is defined by a finite set of identities involving only omega-
words, it is effortless to check if a given monoid belongs to the variety.

Principal varieties. We summarise the varieties seen so far. Finite set of identities for the
varieties given in Section 2.2 are given by Fig. 2.1.

The equations for the quantifier alternation hierarchy are of particular importance and we
choose to put them apart. They come from a long line of research around the so-called dot-depth
hierarchy.

Theorem 2.29 (Pin, Weil [100, Theorem 5.9, Corollary 2.5]).
Let i be an integer. The languages in Σi[<] form a positive variety of languages and are defined
by the equations:

xω ≤ xωyxω for every y ≤Σi−1[<] x.

Note that this does not imply that we can decide membership in Σi[<] for every i. This is a
very long-standing open problem, the state-of-the-art being the decidability of Σ4[<] by Place
and Zeitoun [103].

2.6. Forest algebras 41

2.6 Forest algebras

The algebraic method is dramatically successful in the world of finite words. The obvious next
step is to extend this method to regular tree languages. A set of algebraic objects recognising trees
has been proposed by Bojanczyk and Walukiewicz [17], the so-called forest algebras. However,
these are less canonic than the monoid framework. Indeed, it is possible to imagine many
algebraic objects, and their use gave less striking results than for words.

The key idea is to mimic forest automata. In their definition, we can see two sorts of regular
behaviours, a horizontal one that comes from the regular languages in the rules a(L)→ q, and a
vertical one which comes from the global automaton structure. Another difference with words is
that the considered operation was straightforwardly chosen: the concatenation of words was the
only possibility. The horizontal operation is the concatenation of forests: it is the concatenation
of the two lists of trees of the forests. This operation is denoted by +. However, it is not clear
what a vertical operation can be. To which leaf of the first tree should the root of the second tree
be linked? The answer to that question is to introduce another type of object, namely contexts. A
context is a forest in which one (and only one) leaf is distinguished and carries the symbol □.
Now, the vertical operation is the composition of two contexts: the roots of the second context
are now replacing □ and are the children of its parent. We use · to denote this operation. Note
that we can concatenate a forest with a context, giving a context. We can also compose a context
with a forest, giving a forest.

Example 2.30.
We give an example of these operations. Here f is a forest, c is a context, f + c is a context, c · f
is a forest.

a

b a

a

1

f

b

b □ a
1

c

a

b a

a b

b □ a
1

f + c

b

b a

b a

a a

1
c · f

With these two types of objects, we can define our algebraic recognisers. It is a two-sorted
algebra that mimics the operations we have seen.

Definition 2.31.
A forest algebra is a tuple (H,+,V , ·, act, inl , inr) where

• (H,+) is a monoid, dubbed horizontal monoid, with neutral element 0,
• (V , ·) is a monoid, dubbed vertical monoid, with neutral element 1,
• act is an action V ×H →H ,
• inl and inr are two operations H → V .

We will denote vh instead of act(v,h) and h + 1 and 1 + h instead of inl(h) and inr(h). The
algebra must satisfy the following properties:

• (v ·w)h = v(wh),
• (h+ 1)g = h+ g and (1 + h)g = g + h,
• for every v , w ∈ V , there exists h ∈H such that vh , wh.

42 CHAPTER 2. Algebra and Topology

The last condition is known as faithfulness. When it does not hold in a forest algebra (H,V),
we define the faithful quotient of (H,V) as the forest algebra (H,V ′) where V ′ is the quotient of V
by

v ∼ w iff ∀h ∈H, v · h = w · h.

This quotient is indeed faithful.
Notice that we denoteH additively and V multiplicatively, with neutral elements respectively

0 and 1. This is also respected for powers: for n ∈N, h ∈ H and v ∈ V , the nth power of h is
denoted n · h and the one of v is denoted vn. Similarly, the omega powers of h ∈H and v ∈ V are
respectively ω · h and vω.

Thanks to the operation inr , we have that H is a submonoid of V . It can also be seen
symmetrically with inl .

Fact 2.32.
For every forest algebra (H,V), we have that H is a submonoid of V .

Proof. We use the second axiom of the definition of a forest algebra: for every h,h′ ∈ H ,
inr(h) · h′ = h+ h′. We consider the operation inr :H → V . We only have to prove that it is an
injective morphism to conclude.

Let h,h′ ∈H , by faithfullness the two elements inr (h+ h′) and inr (h) · inr (h′) have the same
image for the action under every g ∈ H . On one hand, inr(h+ h′) · g = h+ h′ + g. On the other
hand, inr (h) · inr (h′) · g = inr (h) · (h′ + g) = h+ h′ + g. So inr is a morphism.

For the injectivity, let h,g ∈ H such that inr(h) = inr(g). In particular, the action of both
these elements on 0 gives the same result. Hence, h = h+ 0 = g + 0 = g. □

The free forest algebra over an alphabet A is the forest algebra A∆ = (HA,VA) where HA is the
set of all trees labelled by A with the concatenation, and VA is the set of all contexts labelled by
A with the composition. The action act is the composition between a context and a forest. The
operations inl and inr are the concatenation between a forest and the neutral context 1 on the
left and on the right.

Recognising languages. A morphism between forest algebras (H,V) and (G,W) is a couple
of morphisms µ : H → G and ν : V →W that preserve the operations act, inl and inr . A tree
language L is recognised by the forest algebra (H,L) if there is a morphism from the free forest
algebra (µ,ν) : A∆→ (H,V) and a subset P of H such that

L = µ−1(P).

Like for the word case, a morphism from the free forest algebra is entirely determined by its
image on the contexts that are a single letter a with a hole directly underneath.

Syntactic forest algebra. Let L be a tree language. Its syntactic congruence ∼L is a duo of
congruences on the free forest algebra defined by

for f ,g ∈HA, f ∼L g if ∀v ∈ VA, v · f ∈ L⇔ v · g ∈ L,
for c,d ∈ VA, c ∼L d if ∀v ∈ VA,h ∈HA, v · c(h) ∈ L⇔ v · d(h) ∈ L.

2.6. Forest algebras 43

This gives a congruence that is compatible with all the forest algebra operations, hence we
can quotient the free forest algebra by the syntactic congruence. We call the obtained forest
algebra the syntactic forest algebra (HL,VL).

Fact 2.33.
Let L be a tree language. The following are equivalent:

• L is regular,
• L is recognised by a finite forest algebra,
• the syntactic forest algebra of L is finite.

Thanks to the general theory of monads of Bojanczyk [19], there exist equivalents to the
variety theory and to the profinite results that stand for finite words. It is also possible to think
of ordered notion for tree languages. We only present here the definitions of unordered varieties
and the Eilenberg-like theorem, that will be needed in Chapter 7.

Let L be a tree language and c be a context, the quotient of L by c is the language:

c−1L = {f | c · f ∈ L}.

We could think of left and right quotient by a forest f as well. They are not needed because they
are covered by the quotients by the contexts f +□ and □+ f . As for words, a tree language class
is a function that maps an alphabet A to a set of tree languages over A.

Definition 2.34.
A tree language class V is a variety if it satisfies, given A and B two alphabets:

• for L,M∈ V (A), all of L∩M, L∪M and Lc belong to V (A),
• for L ∈ V (A) and a morphism (µ,ν) : B∆→ A∆, then µ−1(L) is in V (B),
• for L ∈ V (A) and c ∈ VA, c−1L is in V (A).

We define all operations on forest algebras that allow to define the notion of variety of forest
algebras. Let (H,V) and (G,W) be two forest algebras, and µ,ν a morphism between them. The
product of (H,V) and (G,W) is simply (H ×G,V ×W) with the act, inl and inr being applied
component-wise. We say that (H,V) is a sub-forest algebra of (G,W) if both µ and ν are injective.
We say that (G,W) is a quotient of (H,V) if both µ and ν are surjective. We say that (H,V) divides
(G,W) if (H,V) is the quotient of a sub-forest algebra of (G,W).

Usually, as for words, we would like to specify a sub-forest algebra by giving two subsets of
H and V . However, because of the faithfullness condition, it is possible that two subsets given
does not form forest algebra. To fix this issue, we can take the faithful quotient of the obtained
structure.

Definition 2.35.
Let V be a set of finite forest algebras. We say that V is a variety of forest algebras whenever:

• if (H,V), (G,W) ∈V, then (H ×G,V ×W) ∈V,
• if (H,V) ∈V and (G,W) divides (H,V), then (G,W) is in V.

The functions between varieties of tree languages and varieties of forest algebras are the one

44 CHAPTER 2. Algebra and Topology

expected. Let TAlgebras be the function that associates to a variety of tree languages V the variety
of forest algebras generated by the syntactic forest algebras of languages in V . Let TLanguages be
the function that associates to a variety of forest algebras V the variety of tree languages that are
recognised by a forest algebra in V.

Theorem 2.36.
The two functions TAlgebras and TLanguages are bijections, and are inverses of each other.

Bibliography of the current chapter

[8] Antoine Amarilli and Charles Paperman. “Locality and Centrality: The Variety ZG”. In:
Logical Methods in Computer Science Volume 19, Issue 4 (Oct. 2023). doi: 10.46298/lmcs-
19(4:4)2023.

[17] Mikolaj Bojanczyk and Igor Walukiewicz. “Forest Algebras”. en. In: Logic and Automata
(Oct. 2006). doi: https://hal.science/hal-00346087/.

[18] Mikołaj Bojańczyk. “Algebra for trees”. en. In: Handbook of Automata Theory. Ed. by
Jean-Éric Pin. Zuerich, Switzerland: European Mathematical Society Publishing House,
Sept. 2021. doi: 10.4171/Automata-1/22.

[19] Mikołaj Bojańczyk. “Recognisable Languages over Monads”. In: Developments in Language
Theory. Ed. by Igor Potapov. Cham: Springer International Publishing, 2015. doi: 10.
1007/978-3-319-21500-6_1.

[26] Laura Chaubard, Jean-Éric Pin, and Howard Straubing. “Actions, wreath products of
C-varieties and concatenation product”. In: Theoretical Computer Science. In honour of
Professor Christian Choffrut on the occasion of his 60th birthday 356.1 (May 2006). doi:
10.1016/j.tcs.2006.01.039.

[37] Samuel Eilenberg. “Automata, Languages and Machines, Vol. B”. In: Verlag: Academic
Press Inc, 1976.

[42] Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. “Duality and Equational Theory of
Regular Languages”. In: Automata, Languages and Programming. Ed. by Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-
540-70583-3_21.

[49] J. A. Green. “On the Structure of Semigroups”. In: Annals of Mathematics 54.1 (1951).

[74] Kenneth Krohn and John Rhodes. “Algebraic Theory of Machines. I. Prime Decompo-
sition Theorem for Finite Semigroups and Machines”. In: Transactions of the American
Mathematical Society 116 (1965).

[87] Charles Paperman. “Circuits booléens, prédicats modulaires et langages réguliers”. PhD
thesis. Université Paris Diderot, 2014.

[88] Charles Paperman. Semigroup Online. 2015. url: https://paperman.name/semigroup/.

[92] Jean-Eric Pin. “A variety theorem without complementation”. In: Russian Mathematics
(Izvestija vuzov.Matematika) 39 (1995).

https://doi.org/10.46298/lmcs-19(4:4)2023
https://doi.org/10.46298/lmcs-19(4:4)2023
https://doi.org/https://hal.science/hal-00346087/
https://doi.org/10.4171/Automata-1/22
https://doi.org/10.1007/978-3-319-21500-6_1
https://doi.org/10.1007/978-3-319-21500-6_1
https://doi.org/10.1016/j.tcs.2006.01.039
https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/10.1007/978-3-540-70583-3_21
https://paperman.name/semigroup/

Bibliography of the current chapter 45

[95] Jean-Eric Pin. Mathematical foundations of automata theory. 2014. url: http://www.irif.
fr/~jep/PDF/MPRI/MPRI.pdf.

[97] Jean-Eric Pin. “Profinite Methods in Automata Theory”. In: 26th International Symposium
on Theoretical Aspects of Computer Science. Ed. by Susanne Albers and Jean-Yves Marion.
Vol. 3. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2009. doi: 10.4230/LIPIcs.STACS.
2009.1856.

[99] Jean-Eric Pin and Howard Straubing. “Some results on C-varieties”. eng. In: RAIRO -
Theoretical Informatics and Applications 39.1 (Mar. 2010). doi: 10.1051/ita:2005014.

[100] Jean-Eric Pin and Pascal Weil. “Polynomial Closure and Unambiguous Product”. In:
Proceedings of the 22nd International Colloquium on Automata, Languages and Programming.
ICALP ’95. Berlin, Heidelberg: Springer-Verlag, 1995. doi: 10.5555/646249.685349.

[101] Jean-Eric Pin and Pascal Weil. “The wreath product principle for ordered semigroups”.
In: Communications in Algebra 30 (2002).

[103] Thomas Place and Marc Zeitoun. “Going Higher in First-Order Quantifier Alternation
Hierarchies on Words”. In: Journal of the ACM 66.2 (Mar. 2019). doi: 10.1145/3303991.

[109] Jan Reiterman. “The Birkhoff theorem for finite algebras”. In: algebra universalis 14 (1982).
doi: 10.1007/BF02483902.

[112] M. P. Schützenberger. “Une théorie algébrique du codage”. fre. In: Séminaire Dubreil.
Algèbre et théorie des nombres 9 (1955).

[113] M.P. Schützenberger. “On finite monoids having only trivial subgroups”. In: Information
and Control 8.2 (1965). doi: 10.1016/S0019-9958(65)90108-7.

[119] Imre Simon. “Piecewise testable events”. In: Automata Theory and Formal Languages. Ed.
by H. Brakhage. Berlin, Heidelberg: Springer Berlin Heidelberg, 1975. doi: 10.1007/3-
540-07407-4_23.

[125] Howard Straubing. “Families of recognizable sets corresponding to certain varieties of
finite monoids”. In: Journal of Pure and Applied Algebra 15.3 (1979). doi: 10.1016/0022-
4049(79)90024-0.

[129] Pascal Tesson and Denis Thérien. “Diamonds are forever: the variety da”. In: Semigroups,
Algorithms, Automata and Languages. WORLD SCIENTIFIC, Nov. 2002. doi: 10.1142/
9789812776884_0021.

[131] Bret Tilson. “Categories as algebra: An essential ingredient in the theory of monoids”. en.
In: Journal of Pure and Applied Algebra 48.1 (Sept. 1987). doi: 10.1016/0022-4049(87)
90108-3.

http://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.4230/LIPIcs.STACS.2009.1856
https://doi.org/10.4230/LIPIcs.STACS.2009.1856
https://doi.org/10.1051/ita:2005014
https://doi.org/10.5555/646249.685349
https://doi.org/10.1145/3303991
https://doi.org/10.1007/BF02483902
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1016/0022-4049(79)90024-0
https://doi.org/10.1016/0022-4049(79)90024-0
https://doi.org/10.1142/9789812776884_0021
https://doi.org/10.1142/9789812776884_0021
https://doi.org/10.1016/0022-4049(87)90108-3
https://doi.org/10.1016/0022-4049(87)90108-3

46 CHAPTER 2. Algebra and Topology

Chapter3
Circuit Complexity and Lower Bounds

Outline of the current chapter

3.1 Boolean circuits 48
3.1.1 Definitions . 48
3.1.2 Classes of small circuits . 49

3.2 Adding arbitrary predicates to the logic 52

3.3 Lower bounds 54
3.3.1 The parity language . 54
3.3.2 Depth hierarchy . 55
3.3.3 Superconcentrators . 56
3.3.4 Discriminator lemma . 57

In 1857, George Boole introduced a formal way of describing logical operations: the Boolean
algebra. Its object are truth values true and false, and its operations are logical operators as con-
junctions or disjunctions. Almost a century later, Claude Shannon [117] used this mathematical
framework to successfully abstract the design of digital circuits. From that efficient electronical
circuits, both in size and velocity, could be constructed. This was only the beginning for that
abstract model of computation, as it supplies with a parrallel model of computation. Nowadays,
its study is a consequent part of complexity theory. In fact, they provide a non-uniform version
of the renowned class P of functions computable in polynomial time by a deterministic Turing
machine. By their combinatorial design, they are more suitable for the task of finding undoable
problems with a certain amount of given ressources. In fact, finding lower bounds against circuit
classes is a major theoretical task, with only a few striking success. One of them is due to Furst,
Saxe and Sipser [41] and show that counting modulo 2 can not be done with circuits that can be
evaluated in constant time in parallel. As for regular languages, Boolean circuits have a great
interplay with formal logic, where the inherent non-uniformity of circuits is captured by having
arbitrary numerical predicates. In particular, small depth circuits and extensions of first-order
logic have numerous bindings. See [136] for an introduction to circuit complexity.

47

48 CHAPTER 3. Circuit Complexity and Lower Bounds

x1 x2 x3 x4

¬x1 ¬x2 ¬x3 ¬x4

∧

∨∧

∧ ∧∨ ∨

1
Figure 3.1: A first circuit

3.1 Boolean circuits

3.1.1 Definitions

A first Boolean circuit is given in Fig. 3.1.
We can see that there are three key ingredients in a circuit:

• several inputs labelled with variables and negated variables,
• many nodes labelled with Boolean functions (here conjunctions and disjunctions),
• one special node which is the output (usually drawn at the bottom).

Informally, this example is a recognition device for words over {0,1} of size four. Given a word
u = u1u2u3u4, each input with a variable takes the value of ui , and each input with a negated
variable takes the value ¬ui . We then evaluate the circuit top-down thanks to the Boolean
functions. The word is accepted if the output has value 1, and rejected otherwise. In this
example, 0110 is accepted and 0101 is rejected.

We can formally describe what is a circuit. We recall that the fan-in (resp. fan-out) of a node
of directed graph is the number of incoming (resp. outcoming) edges.

Definition 3.1.
A circuit with n inputs is a labelled directed acyclic graph (DAG for short) such that:

• there are exactly 2n nodes of fan-in 0. They are labelled by x1, · · · ,xn and ¬x1, · · · ,¬xn
and called the input gates,

• every other node is labelled with a Boolean function that takes as many entries as the
fan-in of the node. They are called gates instead of nodes,

• there is exactly one node of fan-out 0 called the output gate.

The edges of the graph will be called wires.

Let C be a circuit with n inputs and u ∈ {0,1}∗ be a binary word of size n. The output of C on
input u is defined inductively on the structure of the DAG. The output of an input gate labelled
by xi is 1 if ui = 1 and 0 otherwise. The output of an input gate labelled by ¬xi is 1 if ui = 0 and
0 otherwise. The output of a gate labelled by a Boolean function f , is f (y1, . . . , yk) where y1, . . . , yk
are the outputs of the preceding gates. The output of the circuit is the output of the output gate.
A word is accepted if the output is 1. The language L(C) of the circuit is the set of words of size
n that are accepted by C.

3.1. Boolean circuits 49

Families of circuits. We want a notion of ressources needed by a circuit asymptotically. This is
the reason why we consider families of circuits instead. A family of circuits is a sequence (Cn)n∈N
of circuits such that Cn has n input gates. The language recognised by the family is the union of
all the languages of its circuits:

L(C) =
⋃
n

L(Cn).

After some point, we will allow ourselves to stop making a distinction between circuits and
families of circuits, and we will identify a class of circuits with their languages. We will often
also consider circuits with several outputs.

Complexity of a family. We will be interested in languages recognised by “small” circuits.
Therefore, we have to define what “small” means. There are several possible parameters we can
look at. The size of a circuit is its number of gates. The depth of a circuit is the size of the longest
path from an input gate to the output gate. The fan-in of a circuit is the maximal fan-in of the
underlying DAG. We can extend all of these notions to families by looking at the function that
associates to n the size (resp. depth, fan-in) of Cn.

Another notion of “simplicity” for a circuit is to look at the Boolean functions used in the
gates.

Example 3.2.
They are several classical possibilities.

• ∧-gates, labelled by a conjunction: the output is 1 if and only if all the inputs are 1.
• ∨-gates, labelled by a disjunction: the output is 1 if and only of one if the inputs is 1.
• MODq-gates, labelled by a counting function: the output is 1 if and only if the number

of inputs that are 1 are divisible by q.
• MAJ-gates, labelled by a majority function: the output is 1 if and only if more than half

of the inputs are 1.

More than two letters. So far, all the languages that can be recognised are over a binary
alphabet. To extend circuits to languages over arbitrary alphabets, we adopt the so-called one-hot
encoding. Let A = {a1, . . . , ak} be an alphabet with k letters. A circuit for words of size n will have
kn input gates labelled with a1(x1), . . . , ak(x1), · · · , a1(xn), . . . , ak(xn). Hence, each variable will have
one input per possible letter. On input u, the output of a gate aj(xi) will be 1 if and only if
ui = aj .

3.1.2 Classes of small circuits

Recall that one of the reasons for the introduction of circuits is to have a combinatorial leverage
on the P , NP question. We call P/poly the class of languages defined by families of circuits
whose size is growing polynomially. This name is not coincidental, this class also corresponds
to the class of languages definable by a poynomial-time deterministic Turing machine with
polynomial advice: for each size of words there exists a string of polynomial size that can be
used for the computation. This gives immediately that:

P ⊆ P/poly.

50 CHAPTER 3. Circuit Complexity and Lower Bounds

Accordingly, exhibiting a language in NP that is not in P/poly would solve the P , NP question
for good.

Fact 3.3 (Shannon [118, Theorem 7]).
Almost all Boolean functions are not in P/poly.

Even if this result gives hope, it has to be relativised. First, it is proved via a counting
argument. Therefore it does not give any specific example of a function not in P/poly. Indeed,
we yet have to find such a function (the best known bounds are linear). Secondly, the “almost all”
in the statement doesn’t say anything about a relationship with NP.

Since we are so far to proving a lower bound against P/poly, it has been proposed to start
with simpler circuits. For instance, by restricting the depth.

Definition 3.4.
We define the following classes of circuit families only using ∧-gates and ∨-gates:

• AC0 has all the circuits with the size bounded by a polynomial and the depth bounded
by a constant,

• NC0 has all the circuits with both the fan-in and the depth bounded by a constant,
• NC1 has all the circuits with the size bounded by a polynomial, and the depth bounded

by O(log(n)).

The class NC0 can only express a few languages: there are only a bounded number of inputs
that are connected to the output gate. In particular, their size is bounded by a constant. It
is possible to find an equivalent circuit of depth only 2 that stays in NC0. It is worthless to
restrict only the depth in AC0 and NC1, as they would be able to express every language. Indeed,
we can put any Boolean function into conjunctive normal form (a conjunction of disjunctions)
and therefore compute it with a circuit of depth 2, but with an exponential size. We have the
containment AC0 ⊆ NC1. To see it, we can replace every unbounded fan-in ∧-gate and ∨-gate in
an AC0 circuit by a balanced binary tree of ∧-gates of fan-in 2. With this procedure, the size only
grows by a polynomial and the depth is bounded by a logarithm. This ensures that the obtained
circuit is in NC1.

Adding more gates. We mentioned in the previous subsection a couple of other types of gates:
MOD-gates and MAJ-gates. We can add them to our circuits, assuming that we have their
computational power for free.

Definition 3.5.
The following three classes of circuits are defined exactly like AC0, but with extra gates:

• ACC0[p] has MODp-gates for a prime integer p,
• ACC0 has MODq-gates for every integer q,
• TC0 has MAJ-gates.

The ACC0 circuits without ∧-gates or ∨-gates form the class CC0. For X a set of integers, we
will also write ACC0[X] for the AC0 circuits that can use MODq gates with Q ∈ X. These classes

3.1. Boolean circuits 51

are obviously more expressive than AC0. We know how they relate between each other.

Fact 3.6.
The function computed by a MAJ-gate with n inputs can be computed with a circuit with only
fan-in 2 ∧-gates and ∨-gates, polynomial size and logarithmic depth.

Proof sketch. First we have to accept that we can perform the simultaneous addition of n integers
encoded over n bits, with a NC1 circuit (with n+ log(n) outputs). The addition of two n bits
numbers is in AC0, hence the naive circuits with a binary tree over the n words and a binary
tree for each unbounded fan-in gate would give a depth of O(log(n)2). A clever trick that allows
to only perform partial intermediate addition gives the desired depth of O(log(n)). Then to
compute a MAJ-gate, we consider the inputs are encoded over n bits (by plugging n−1 0s in
front of them), and we add them all together. We end up with the binary representation of the
sum of the inputs. We can check that it is smaller than the binary representation of n

2 with a
simple AC0 circuit. □

Fact 3.7.
Let q be an integer. The function computed by a MODq-gate with n inputs can be computed

with a circuit with ∧-gates, ∨-gates and MAJ-gates, size 3
⌊
n
q

⌋
+ 4 and depth 3.

Proof. For 0 ≤ i ≤ n an integer, let THRi be the circuit with n inputs that consists in one single
MAJ-gate with 2n inputs that copy the inputs of THRi and plugs 1s in n− i extra inputs and 0s
or the remaining i extra inputs. The circuit THRi outputs 1 if and only if there are more than i
1s in the input.

We can now define a circuit EQi that outputs 1 if and only if there are precisely i 1s in its
inputs:

EQi = THRi ∧¬THRi+1.

The circuit for a MODq gate just checks whether there is 0,q,2× q, · · · , or
⌊
n
q

⌋
× q 1s in the

input:

MODq =

⌊
n
q

⌋∨
i=0

EQi×q.

□

Fine-grained complexity. Another focus of circuit complexity is to look at subclasses of AC0 to
obtain a very precise classification of problems. The class AC0 consists of constant depth circuits.
It is natural to look at the hierarchy of circuits with depth d, when d is fixed. Note that in the
definition we give here, there is an extra NC0 layer near the inputs. It is a foreshadowing of the
links with logical formalisms we will see in the next section.

Definition 3.8.
The classes Σ0 and Π0 are defined as NC0. For an integer i ≥ 1, a circuit is in Σi if its output
gate is a ∨-gate that is fed by a bunch of Πi−1 circuits. Dually, a circuit is in Πi if its output

52 CHAPTER 3. Circuit Complexity and Lower Bounds

x1 x2 xn91 xn

¬x1 ¬x2 ¬xn91 ¬xn· · ·

∨

∧ · · · ∧ · · · ∧

∨ · · · ∨ ∨ · · · ∨ ∨ · · · ∨

1
Figure 3.2: A Σ2 circuit

gate is a ∧-gate that is fed by a bunch of Σi−1 circuits.

We moreover define, for every i and j, the classes Σ
j
i and Π

j
i analogously to Σi and Πi but

with the first layer restricted to NC0-circuits of depth 2 and fan-in bounded by j. We have that
Σi =

⋃
j Σ

j
i . For instance, a Σ2 circuit is of polynomial size, depth 3 and consists of an output

∨-gate with ∧-gates as inputs, each of these having ∧-gates as inputs, each of these having a
bounded number of variables as inputs. Such a circuit looks like Fig. 3.2.

There is one last notion of circuit complexity to define. This approach is different than the
previous one, this time we will impose stronger conditions on the size of the circuit. For such
precise a complexity measure, it makes sense to distinguish between the two notions of size for a
graph: the number of vertices and the number of edges.

Definition 3.9.
The subclass of AC0 of circuits with only a linear number of gates is called LAC0. When it is
the number of wires that is linear, it is called WLAC0 instead.

Because a connected graph has at least as many edges than nodes, we have that WLAC0 is
weaker than LAC0.

The relations among the small circuit classes mentioned so far are summarised in the
following diagram:

NC0

Σ1 Σ2 · · · Σi

WLAC0 LAC0

AC0 ACC0[p] ACC0 TC0 NC1

⊆
⊆

⊆ ⊆ ⊆ ⊆

⊆
⊆

⊆ ⊆ ⊆ ⊆

1

3.2 Adding arbitrary predicates to the logic

We have seen that automata and logic share deep connections. There exists a similar interplay
between circuits and logic. However, circuit families are a non-uniform model of computation: the
circuits for each size must not satisfy any particular relation. For instance, with an enumeration
of Turing machines, we can construct a family (Cn) with Cn is the constant 1 if the nth Turing

3.2. Adding arbitrary predicates to the logic 53

machine halts and 0 otherwise. This family even belongs to NC0. To match such a behaviour, we
need to use the power of arbitrary numerical predicates. There are many results of equivalences
between circuits and logical classes.

Theorem 3.10 (Gurevitch and Lewis [55], Immerman [63]).
It stands that

AC0 = FO[arb].

This result can be adapted for many subclasses of AC0.

Lemma 3.11 (Barrington, Compton, Straubing and Thérien [14]).
With X any set of integers,

ACC0 = (FO + MOD)[arb],

ACC0[X] = (FO + MOD[X])[arb].

Lemma 3.12 (Koucký, Lautemann, Poloczek and Thérien [71]).
It stands that:

LAC0 = FO2[arb].

Lemma 3.13 (Maciel, Péladeau and Thérien [78]).
For i an integer, the classes on the left are circuit classes,

Σi = Σi[arb],

Πi = Πi[arb].

Note that this implies in particular that NC0 corresponds to the class of languages definable
by a quantifier-free formula with arbitrary numerical predicates. There is a similar characterisa-
tion of TC0 with some ad-hoc quantifiers that we are not showing here. All the proofs of these
theorems are along the same line. The translation from formulae translates existential quan-
tifiers to an unbounded fan-in ∨-gates, universal quantifiers to an unbounded fan-in ∧-gates,
disjunction to fan-in 2 ∨-gates, conjunction to fan-in 2 ∧-gates. For the other way around, we
can encode the structure of the circuits into the arbitrary predicates.

Lindström quantifiers Like the previous logical characterisation, there are circuit equivalents
to logical fragments with any Lindström quantifiers. For C a class of regular languages, we
denote by AC0[C] the class of circuits of polynomial size, bounded depth and bounded fan-in
that can only use gates labelled by regular languages in C. We have a general theorem for the
usage of Linström quantifiers.

54 CHAPTER 3. Circuit Complexity and Lower Bounds

Theorem 3.14 (Barrington, Immerman, and Straubing[12, Theorem 9.1]).
Let C be a class of regular languages. It stands that

AC0[C] = Lin(C)[arb].

Proof. The theorem referenced above is about a uniform version of both classes. It can be easily
adapted to match the non uniform version with arbitrary predicates. □

3.3 Lower bounds

A tremendous line of research consists in finding lower bounds against classes of circuits, that is
to say exhibiting a language and showing that it cannot be computed by a given type of circuit.
For instance, a lower bound in NP against P/poly would settle the P , NP question. So far, the
best result in this regard is due to Ryan Williams.

Theorem 3.15 (Williams [138]).
There exists a language in NEXP that cannot be computed by an ACC0 circuit:

NEXP ̸⊊ ACC0.

This result from the state of the art should be contrasted one might like: NEXP is much larger
than NP, and ACC0 is much smaller than P/poly.

Another reason to look at lower bounds is to show that two classes of circuits are distinct.
For instance, was it necessary to introduce MOD-gates, or can they be simulated inside of AC0?
We will present here the main techniques known to prove inexpressibility results for circuits.

3.3.1 The parity language

One of the first influential lower bounds against a circuit class was against AC0. It is often
thought of as one of the greatest results in the field. The chosen language is very simple.

Definition 3.16.
The PARITY language is the language over {0,1} of words with an even number of 1s. A
regular expression for it is (0∗10∗10∗)∗.

The lower bound can now be stated.

Theorem 3.17.
We have:

PARITY < AC0.

There exist many proofs of this theorem. Ajtai [1] used model theory. Furst, Saxe and Sipser
[41] worked directly with the combinatorial structure of the circuits. They introduced the

3.3. Lower bounds 55

“random restriction” method. It works by showing, with a probabilistic method, that it is possible
to set a small fraction of the inputs of a circuit to reduce its depth by one. All is left to do is to
easily show that every depth 2 circuit computing PARITY has size 2n.

One last line of proof is the algebraic method of Razborov [108]. It works by showing that
any function computed by an AC0 circuit can be accurately approximated by a low-degree
polynomial. To conclude, he shows that the parity function has no such approximation.

The later techniques have later been extended by Smolenski [123] to show a stronger result.

Lemma 3.18.
Let q be an integer and let MODq be the language of words with a number of 1s divisible by q.
With X the set of integers that are prime with q, we have that

MODq < ACC
0[X].

Those results can be used to show that the inclusion between some classes of circuits are
strict: for any prime p

AC0
⊊ ACC0[p] ⊊ ACC0.

3.3.2 Depth hierarchy

There also are lower bounds against the fine structure of AC0, that is to say against the classes
we denoted by Σi and Πi . Let d be a depth. The Sipser languages Ld,i are defined for a number
of inputs i = jd for some integer j, over a binary alphabet. We will consider that we are encoding
the positions in the word with a vector of {0, . . . ,m− 1}d . We define the arbitrary predicate that
only has tuples with 0 ≤ l < i and 0 ≤ k1, . . . , kd < j such that

Encode(l,k1, . . . , kd) iff l = k1 +mk2 + · · ·+md−1kd .

The languages Ld,i are defined by the formulae

∃k1,∀k2, . . . ,∃kd−1,∀kd ,∀l,Encode(l,k1, . . . , kd)⇒ a(l)

for even ds and
∃k1,∀k2, . . . ,∀kd−1,∃kd ,∃l,Encode(l,k1, . . . , kd)∧ a(l)

for odd ds.
They are in Σi[arb] and hence in the circuit class Σi . The idea is that every gate is of fan-in j

and the gates of a same layer partition the set of inputs.
Sipser [121] showed that they need superpolynomial size for Σi−1-circuit, and later Håstad in

his PhD thesis [59] gave an exponential lower bound.

Theorem 3.19 (Sipser [121], Håstad [59]).
The language Ld,n is in Σi but not in Σi−1.

There is an obvious analogue for the hierarchy Πi .

56 CHAPTER 3. Circuit Complexity and Lower Bounds

3.3.3 Superconcentrators

Another angle of study is to look at the underlying graph of a circuit, and show that it must
satisfy high connectivity properties. For instance, Valiant [134, 133] proposed to use the so-called
superconcentrators to that end.

Definition 3.20.
A n-superconcentrator is a DAG with n nodes of fan-in 0 and n nodes of fan-out 0. For every
1 ≤ k ≤ n and subset A of the fan-in 0 nodes and subset B of the fan-out 0 nodes both of size k,
there must exist k vertex-disjoint paths from A to B.

It can be used to show lower bounds for many problems arising from algebra. For instance,
consider the problem of multiplying two Boolean polynomials of degree n− 1. The 2n inputs are
the coefficients of both polynomials, and the output is the 2n coefficients of the product. It can be
shown [134] that any Boolean circuit for the polynomial multiplication is a n-superconcentrator.
Hence it remains to prove lower bounds on the size of an n-superconcentrator. However, the
quest for a general lower bound ran short because of a result of Valiant, later improved by
Pippinger.

Fact 3.21 (Valiant [133], Pippinger [102]).
There exists a superconcentrator with linear number of edges, and a logarithmic depth.

Nevertheless, a superlinear lower bound has been proved for circuits of bounded depth.
We need to define the usual hierarchy of slowly growing functions from N to N. Let f0 be the
identity function, multiplied by 2. For i ≤ 1, we define the ith to be, for n ∈N,

fi(n) = fi−1(fi−1(· · ·fi−1(2)))

where fi−1 is applied n times. These functions are rapidly growing, we need to use their inverses

f −1
i (n) = min{m | fi(m) ≥ n}.

Theorem 3.22 (Dolev, Dwork, Pippinger and Widgerson [32], Pudlák [106]).
Let k ≥ 4, every n-superconcentrator of depth k must have at least O(nf −1

⌊k/2⌋(n)) edges.

The remaining cases of depth 2 and 3 have been settled by Alon and Pudlák [4]. This theorem
allows to show that problems such as polynomial multiplication are not in WLAC0. Koucky,
Pudlák and Thérien [72, Theorem 1] used these methods to exhibit a language that is in LAC0

but not in WLAC0 (even with modular gates). It should be mentioned that it is also possible
to separate LAC0 from AC0, with the k-clique language [111, Theorem 1.2], with completely
different techniques.

3.3. Lower bounds 57

3.3.4 Discriminator lemma

There are only a few tools to prove lower bounds against AC0. Hence it is even more difficult
to fight against circuits with more type of gates, like TC0. One of the few techniques available
in this case is due to Hajnal and al. However, it was only successfully applied to TC0 circuits
that are very shallow (of depth 2 or 3), or with a limited number of MAJ-gates (bounded by a
logarithm). For instance, we have shown in Fact 3.7 that PARITY is in TC0, but it is known that
it requires more than a logarithmic number of MAJ-gates [104]. It can be extended to any MODq
function, though the precise bound is less precise.

Theorem 3.23 (Gopalan, Servedio [47, Theorem 26]).
The function MODq cannot be computed by an AC0 circuit even with O(log(n)) MAJ-gates.

Definition 3.24.
Let C be a circuit with n inputs, A and B two disjoint subsets of {0,1}n, and ε > 0. We
consider PA and PB the uniform probability distributions on A and B. We say that C is an
ε-discriminator for A and B if

|PA(C = 1)−PB(C = 1)| ≥ ε.

The discriminator lemma states that a MAJ-gate has to be correlated with one of its inputs.

Lemma 3.25 (Hajnal, Maass, Pudlák, Szegedy, Turán [56]).
Let C be a circuit with a MAJ-gate for output that is fed by C1, . . . ,Cm. Let A,B ⊆ {0,1}n a
subset of accepted and rejected words for C. Then one of the Ci is an 1

m -discriminator for A
and B.

To illustrate this tool, we will consider the equality function EQ that outputs 1 if and only
if there are precisely half of the inputs with value 1. In particular, it always outputs 0 on odd
inputs. We have seen in the proof of Fact 3.7 that this function can be computed with a TC0

circuit which is an ∧-gate of two MAJ-gates. There exists a trick, due to Arka Gosh, that allows
to reduce the number of MAJ-gates needed.

We say that a circuit is in Majority Normal Form (MNF for short) if it is of depth 2 with a
single MAJ-gate, as the output.

Property 3.26.
The equality function EQ is computable by a MNF of quadratic size.

Proof. Let n be an even input size. We assume we can do a THRn2/4 circuit as in the proof of
Fact 3.7, that outputs 1 whenever there are more than n2

4 1s in its input. The circuit for EQ is
then

THRn2/4(xi ∧¬xj for 1 ≤ i, j ≤ n).

58 CHAPTER 3. Circuit Complexity and Lower Bounds

This circuit is indeed of quadratic size, even when replacing THR by a MAJ-gate only a quadratic
number of constants are added. Let w be a word. It is easy to see that the number of subcircuits
of THR that is evaluated to 1 is precisely |w|0 × |w|1. But this value, when constrained with
|w|0 + |w|1 = n is known to be always less or equal to n2

4 , with this value reached if and only if
|w|0 = |w|1 = n

2 . Therefore the whole circuit evaluates to 1 if and only if precisely half of the
inputs are 1. □

The goal is to show that it is essentially optimal, that is to say that there is no MNF of linear
size that computes the EQ function. Thanks to the discriminator lemma, it is enough to show
that for carefully selected A and B, EQ is poorly correlated by any ∧-gate (resp. ∨-gate).

Recall that the (k,n) binomial coefficient, denoted
(n
k

)
, is the number of way of choosing k

elements in a set of size n. It satisfies many relations that we list here. For all 0 ≤ k < n:

i)
(n
k

)
= n!
k!(n−k)! ,

ii)
(n
k

)
=

(n
n−k

)
,

iii)
(n
k

)
=

(n−1
k−1

)
+
(n−1
k

)
,

iv)
(n
k

)
≤ 2n.

Let C be an MNF over n inputs computing EQ. Let k = n
2 and A the set of words with k 1s

and B the set of word with k − 1 or k + 1 1s. We have that C accepts A and rejects B. Let α be one
of the subcircuits of C. We assume that it is a ∧-gate of variables, the other case being dual. We
assume that it is bound to a non negated inputs and b negated inputs. We have to evaluate and
bound by above the quantity:

∆ = |PA(α = 1)−PB(α = 1)|.

We can assume that a,b ≤ k, otherwise the probabilities become null. First of all, the size of
A is

(n
k

)
. The words such that α evaluates to A are the ones with a 1 in the position of the non

negated inputs and a 0 in the position of the negated inputs. Hence to obtain such a word that
falls in A, we have to choose the k −a positions in the remaining n−a−b positions that will carry
a 1. Therefore,

PA(α = 1) =
(n−a−b
k−a

)(n
k

) =

(n−a−b)!
(k−a)!(n−k−b)!

n!
k!(n−k)!

=

(n−a−b)!
(k−a)!(k−b)!

n!
k!2

=
k · · · (k − a+ 1) · k · · · (k − b+ 1)

n · · · (n− a− b+ 1)
.

Similarly, the size of B is
(n
k+1

)
+
(n
k−1

)
= 2

(n
k+1

)
thanks to ii) and the fact that k = n− k. We will

often use this last fact silently. Therefore,

PB(α = 1) =
(n−a−b
k−a−1

)
+
(n−a−b
k−a+1

)
2
(n
k+1

) =

(n−a−b)!
(k−a−1)!(k−b+1)! + (n−a−b)!

(k−a+1)!(k−b−1)!

2 n!
(k+1)!(k−1)!

=
(k + 1) · · · (k − b+ 2) · (k − 1) · · · (k − a) + (k + 1) · · · (k − a+ 2) · (k − 1) · · · (k − b)

2n · · · (n− a− b+ 1)

=
(k + 1) · k · (k − 1) · · · (k − b) · (k − 1) · · · (k − a)

2n · · · (n− a− b+ 1)

(
1

(k − b+ 1)(k − b)
+

1
(k − a+ 1)(k − a)

)
.

Putting those two bits of computation together:

3.3. Lower bounds 59

PA(α = 1)−PB(α = 1)

= PA(α = 1)
[
1− (k + 1)(k − a)(k − b)

2k
(

1
(k − b+ 1)(k − b)

+
1

(k − a+ 1)(k − a)
)
]

= PA(α = 1)
[
1− (k + 1)(k − a)

2k(k − b+ 1)
− (k + 1)(k − b)

2k(k − a+ 1)

]
= PA(α = 1)

[
δ

2k(k − a+ 1)(k − b+ 1)

]
where:

δ = 2k(k − a+ 1)(k − b+ 1)− (k + 1)(k − a+ 1)(k − a)− (k + 1)(k − b+ 1)(k − b).

The key observation is that δ is a polynomial in k. A quick glance immediately gives that
it is a degree 3, but it is actually of degree 1. To see that we develop the polynomial with the
function “coeff” of Xcas:

δ = (2ab+ a+ b − a2 − b2)k + (a+ b − a2 − b2).

There are two regimes depending of if a and b are small or not. We only need an estimate on(n
k

)
, which comes from the fact that it is the largest i,n binomial coefficient for 0 ≤ i ≤ n :(

n
k

)
≥ 2n

n+ 1
.

First case. Assume that a ≥ log(n)2 or b ≥ log(n)2. The values k,a and b are bounded above by
n, so we can ruthlessly bound the right part of ∆:∣∣∣∣∣ δ

2k(k − a+ 1)(k − b+ 1)

∣∣∣∣∣ ≤ 10n3.

Now we need to bound PA(α = 1) using item (iv) and the bound on central coefficients:

PA(α = 1) ≤
(n−a−b
k−a

)(n
k

) ≤ 2n−a−b
n+ 1

2n
≤ n+ 1

2log(n)2 .

In the end

∆ ≤ 12n3

nlog(n)
= o(

1
n

).

Second case. Assume that both a ≤ log(n)2 and b ≤ log(n)2. We bound PA(α = 1) by 1 and
hence

∆ ≤
10n log(n)4

2k(k − a+ 1)(k − b+ 1)
≤

10n log(n)4

n(n2 − log(n)2)2 ∼ 40
log(n)4

n2 = o(
1
n

).

We can conclude.

60 CHAPTER 3. Circuit Complexity and Lower Bounds

Theorem 3.27.
The equality function EQ cannot be computed by a MNF of linear size.

Proof. Let (Cn) be a MNF such that Cn has less than ln gates. By Lemma 3.25, one of the bottom
∧-gates or ∨-gates α must satisfy ∆ = |PA(α = 1)−PB(α = 1)| ≥ 1

ln . However, by the previous
computations, there is an n big enough such that every such ∆ is strictly smaller than 1

ln . This
is a contradiction. □

Bibliography of the current chapter

[1] M. Ajtai. “Σ1
1-Formulae on finite structures”. en. In: Annals of Pure and Applied Logic 24.1

(July 1983). doi: 10.1016/0168-0072(83)90038-6.

[4] Noga Alon and Pavel Pudlak. “Superconcentrators of depths 2 and 3; odd levels help
(rarely)”. In: Journal of Computer and System Sciences 48.1 (Feb. 1994). doi: 10.1016/
S0022-0000(05)80027-3.

[12] David Barrington, Neil Immerman, and Howard Straubing. “On uniformity within NC1”.
In: July 1988. doi: 10.1109/SCT.1988.5262.

[14] David A. Barrington, Kevin Compton, Howard Straubing, and Denis Thérien. “Regular
languages in NC1”. In: Journal of Computer and System Sciences 44.3 (1992). doi: 10.1016/
0022-0000(92)90014-A.

[32] Danny Dolev, Cynthia Dwork, Nicholas Pippenger, and Avi Wigderson. “Superconcen-
trators, Generalizers and Generalized Connectors with Limited Depth (Preliminary
Version)”. In: Jan. 1983. doi: 10.1145/800061.808731.

[41] Merrick Furst, James B Saxe, and Michael Sipser. “Parity, circuits, and the polynomial-
time hierarchy”. en. In: (1984). doi: 10.1007/BF01744431.

[47] Parikshit Gopalan and Rocco Servedio. Learning and Lower Bounds for AC0 with
Threshold Gates. en. Tech. rep. TR10-074. Electronic Colloquium on Computational
Complexity (ECCC), Apr. 2010. doi: 10.1007/978-3-642-15369-3_44.

[55] Yuri Gurevich and Harry R. Lewis. “A logic for constant-depth circuits”. In: Information
and Control 61.1 (1984). doi: 10.1016/S0019-9958(84)80062-5.

[56] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán.
“Threshold circuits of bounded depth”. en. In: Journal of Computer and System Sciences
46.2 (Apr. 1993). doi: 10.1016/0022-0000(93)90001-D.

[59] Johan Håstad. “Computational limitations for small depth circuits”. en. Thesis. Mas-
sachusetts Institute of Technology, 1986.

[63] Neil Immerman. “Languages that Capture Complexity Classes”. In: SIAM Journal on
Computing 16.4 (1987). doi: 10.1137/0216051.

[71] M. Koucky, S. Poloczek, C. Lautemann, and Denis Therien. “Circuit lower bounds via
Ehrenfeucht-Fraisse games”. In: vol. 2006. Jan. 2006. doi: 10.1109/CCC.2006.12.

[72] Michal Koucký, Pavel Pudlak, and Denis Therien. “Bounded-depth circuits: Separating
wires from gates”. In: May 2005. doi: 10.1145/1060590.1060629.

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1016/S0022-0000(05)80027-3
https://doi.org/10.1016/S0022-0000(05)80027-3
https://doi.org/10.1109/SCT.1988.5262
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1145/800061.808731
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/978-3-642-15369-3_44
https://doi.org/10.1016/S0019-9958(84)80062-5
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1137/0216051
https://doi.org/10.1109/CCC.2006.12
https://doi.org/10.1145/1060590.1060629

Bibliography of the current chapter 61

[78] Alexis Maciel, Pierre Péladeau, and Denis Thérien. “Programs over semigroups of dot-
depth one”. In: Theoretical Computer Science 245.1 (2000). doi: 10.1016/S0304-3975(99)
00278-9.

[102] Nicholas Pippenger. “Superconcentrators”. In: All HMC Faculty Publications and Research
(Jan. 1977). doi: 10.1137/0206022.

[104] Vladimir V. Podolskii. “Exponential lower bound for bounded depth circuits with few
threshold gates”. en. In: Information Processing Letters 112.7 (Mar. 2012). doi: 10.1016/j.
ipl.2011.12.011.

[106] P. Pudlák. “Communication in bounded depth circuits”. en. In: Combinatorica 14.2 (June
1994). doi: 10.1007/BF01215351.

[108] A. A. Razborov. “Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition”. en. In: Mathematical notes of the Academy of Sciences of the
USSR 41.4 (Apr. 1987). doi: 10.1007/BF01137685.

[111] Benjamin Rossman. “On the constant-depth complexity of k-clique”. In: Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing. STOC ’08. Victoria, British
Columbia, Canada: Association for Computing Machinery, 2008. doi: 10.1145/1374376.
1374480.

[117] Claude E. Shannon. “A symbolic analysis of relay and switching circuits”. In: Transactions
of the American Institute of Electrical Engineers 57.12 (1938). doi: 10.1109/T-AIEE.1938.
5057767.

[118] Claude. E. Shannon. “The synthesis of two-terminal switching circuits”. In: The Bell
System Technical Journal 28.1 (1949). doi: 10.1002/j.1538-7305.1949.tb03624.x.

[121] Michael Sipser. “Borel sets and circuit complexity”. In: Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing. STOC ’83. New York, NY, USA: Association for
Computing Machinery, 1983. doi: 10.1145/800061.808733.

[123] R. Smolensky. “Algebraic methods in the theory of lower bounds for Boolean circuit
complexity”. en. In: Proceedings of the nineteenth annual ACM conference on Theory of
computing - STOC ’87. New York, New York, United States: ACM Press, 1987. doi: 10.
1145/28395.28404.

[133] Leslie G. Valiant. “Graph-theoretic arguments in low-level complexity”. en. In: Mathemat-
ical Foundations of Computer Science 1977. Ed. by Jozef Gruska. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1977. doi: 10.1007/3-540-08353-7_135.

[134] Leslie G. Valiant. “On non-linear lower bounds in computational complexity”. en. In:
Proceedings of seventh annual ACM symposium on Theory of computing - STOC ’75. Albu-
querque, New Mexico, United States: ACM Press, 1975. doi: 10.1145/800116.803752.

[136] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer Berlin
Heidelberg, 1999. doi: 10.1007/978-3-662-03927-4.

[138] Ryan Williams. “Non-uniform ACC Circuit Lower Bounds”. In: 2011 IEEE 26th Annual
Conference on Computational Complexity. 2011. doi: 10.1109/CCC.2011.36.

https://doi.org/10.1016/S0304-3975(99)00278-9
https://doi.org/10.1016/S0304-3975(99)00278-9
https://doi.org/10.1137/0206022
https://doi.org/10.1016/j.ipl.2011.12.011
https://doi.org/10.1016/j.ipl.2011.12.011
https://doi.org/10.1007/BF01215351
https://doi.org/10.1007/BF01137685
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1145/800061.808733
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1145/800116.803752
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1109/CCC.2011.36

62 CHAPTER 3. Circuit Complexity and Lower Bounds

Chapter4
Regular Languages and Circuit
Classes

Outline of the current chapter

4.1 Separations witnessed by regular languages 65
4.1.1 Barrington’s theorem. 65
4.1.2 Depth hierarchy . 66
4.1.3 Importance of the addition function 68

4.2 Straubing properties 69
4.2.1 Statement . 70
4.2.2 Positive examples . 71
4.2.3 First negative example: FO + S5 . 73
4.2.4 Second negative example: FO ◦MOD ◦FO 74

We have seen that regular languages, one of the simplest object in computer science, correspond
to a paradigm of sequential computation and have a wide range of applications. It is therefore
natural to challenge complexity classes by trying to identify the regular languages they are able
to compute, with the hope to grab understanding of the class in the process. This approach
obviously only works for small complexity classes: whenever the class is expressive enough to
compute all regular languages, like for instance any class greater than P, this line of research
becomes irrelevant. It has already be done for some models of computation already. For instance,
Amarilli, Jachiet and Paperman studied the space complexity of maintaining regular languages
under updates in the RAM model. This gave a powerful trichotomy of time complexity. We
continue this study for regular languages of trees in Chapter 7. In this thesis, we will also
consider computation in streaming Chapter 6, and incremental maintenance by first-order
updates on relational databases Chapter 7. However, the most dramatic success of this line
of work is when looking at circuit classes, building a bridge between sequential and parallel
computations.

When studying circuit complexity, regular languages appeared to sensationally capture the
essence of the complexity of many classes included in NC1. Indeed, we will see that NC1 can
compute all regular languages. As said before, looking at regular languages is only useful for

63

64 CHAPTER 4. Regular Languages and Circuit Classes

small complexity classes, because too powerful classes are all equally expressive when restricted
to regular languages. In this chapter, we advocate that studying regular languages have to be
studied to understand circuit classes. This point of view is developed in Howard Straubing’s
book “Finite automata, formal logic and circuit complexity” [126]. For instance, when two
classes of circuits are different, it is often the case that this separation is witnessed by a regular
language. It is the case for the famous lower bound of Furst, Saxe and Sipser [41] that PARITY is
not in AC0, showing that the sepration between AC0 and ACC0 is witnessed by a regular language.
Moreover, we will see that there are regular languages that are complete for some classes of
circuits, notably giving an unexpected link between regular languages and the class NC1. This
motivates a systematic identification of regular languages inside given circuit classes.

In Chapter 3, we have presented links between circuit classes and logical formalism with
arbitrary numerical predicates. In his book [126], Straubing conjectured a logical characterisation
of the regular languages in circuits classes. For F a logical fragment, the regular languages of
F[arb] are exactly the languages of F[reg]. In other words, if a formula with arbitrary predicates
expresses a regular languages, then we can rewrite the formula so that it only uses regular
predicates. We give some fragments for which the conjecture is true, and some for which it is
false.

We start by showing that all regular languages are in NC1, which justify that we are only
interested in small depth circuits. To compute a regular language, we can adopt a divide and
conquer algorithm, and simulate in parallel the executions of every portion of a word thanks to
the syntactic monoid.

Theorem 4.1.
Every regular language can be computed by a NC1 circuit. In symbols

Reg ⊆ NC1.

Proof. Let L be a regular language and ML its syntactic monoid and µL its syntactic morphism.
Let also P be a subset of ML that recognises L. We denote by m the size of the monoid. We will
encode an element of ML by a sequence of m bits, with only one of them set to 1. We need a
few gadgets.

• A circuit that takes as inputs the encoding of a letter a and outputs the encoding of µL(a),
• a circuit that takes as inputs the encoding of two monoid elements x and y and outputs

the encoding of x · y,
• a circuit that takes as input a monoid element and outputs a bit that indicates if it belongs

to P or not.

We will respectively refer to them as input (resp. multiplication, output) gadgets. All those
circuits can be assumed of fan-in 2, constant size and constant depth. Indeed, we can take the
conjunctive normal form for them, and expand the unbounded ∧-gates and ∨-gates. Their size
will be exponential but in the number of inputs, which is a constant bounded by 22m.

We can now construct a circuit that recognises L. Under each input, we put an input gadget.
Then we have to multiply all these monoid elements together to obtain the image of the word
in the monoid. To do it efficiently, we adopt a divide and conquer approach and perform the
multiplication gadgets along a balanced binary tree whose leafs are the input gadgets. This
heavily uses the fact that a monoid operation is associative. In the end, we use the output
gadget once to know if the image of the word under µL is in P . We use a linear number of

4.1. Separations witnessed by regular languages 65

NC0

Σ1 Σ2 · · · Σi

WLAC0 LAC0

AC0 ACC0[p] ACC0 TC0 NC1

k-clique
Section 3.3.3

ADDITION?
Section 4.1.3

S5
Theorem 4.3MODq

Lemma 3.18

PARITY
Theorem 3.17

⊊

⊊

⊊ ⊊ ⊊

⊊

⊊

⊊

⊊ ⊊ ?= ?=

Boolean formulae
Theorem 4.5

Figure 4.1: Known relations

gadgets in total, each of them being of constant size and depth. This gives the desired bound of
a polynomial size and logarithmic depth. □

4.1 Separations witnessed by regular languages

A strong evidence regarding the importance of regular languages in circuit classes is that almost
all the separations we know in the important classes defined in this document are witnessed
by regular languages. It is particularly striking that such powerful and non-uniform classes
are faithfully represented by the highly uniform regular languages. We have already seen with
Theorem 3.17 that AC0

⊊ ACC0[2] is witnessed by the PARITY language which is regular. Its
extension Lemma 3.18 furthermore gives that ACC0[p] ⊊ ACC0 is witnessed by any language
MODq for an integer q coprime with p, which are regular as well. This section is aimed at
exposing the results to have the global picture given in Fig. 4.1.

4.1.1 Barrington’s theorem.

Regarding the chain of inclusion ACC0 ⊆ TC0 ⊆ NC1, it is not known whether any equality
holds. However, if any of ACC0 or TC0 is strictly included in NC1, then it is witnessed by a
regular language. It comes from the celebrated and unexpected Barrington’s theorem, first
exhibited in [13]. It was stated in terms of bounded-width branching programs, but we give here
a formulation as the completeness of certain regular languages for NC1, as exposed in [14].

When speaking of completeness, one has to specify the type of reductions considered. For
Barrington’s theorem, the most simple type of reductions are enough. There is a polynomial size
projection of L′ to another language L if there is a circuit that computes L′ and is composed of a
single gate labelled by L, such that the number of inputs of this gate is bounded by a polynomial.
A language L is said to be NC1-complete under projections if it is in NC1 and every language of
NC1 admits a polynomial size projection to L. Such a definition can be extended to any circuit
class.

We will also consider NC0 reductions. A language L′ has a NC0 reduction to a language
L if L′ can be computed by an NC0 circuit with additional gates labelled by L. We defined
completness under NC0-reduction analogously. In particular, if a NC1-complete under NC0

reductions language were to belong to ACC0 (or TC0) then the whole class would collapse to NC1.
The notion that makes the theorem work is the one of solvable groups, that measure if a

group is close of being commutative or not. For G a group and x,y ∈ G, the commutator of x
and y is the quantity [x,y] = xyx−1y−1. The commutator of two subgroups [G,H] is the group

66 CHAPTER 4. Regular Languages and Circuit Classes

generated by the element [x,y] for x ∈ G and y ∈H . The derived series of G is the sequence

G0 = G,

Gi+1 = [Gi ,Gi].

This series is decreasing for the subgroup inclusion.

Definition 4.2.
A group is said to be solvable if its derived series reaches the trivial group with one element.
We denote by Gsol the set of solvable groups.

A monoid is said to be solvable if all the groups it contains are solvable. We denote by Msol
the set of solvable monoids.

For instance, any commutative group is solvable as the derived series is trivial after the
second element. Everything is set for the statement of Barrington’s theorem.

Theorem 4.3 (Barrington [14]).
Every non-solvable monoid is NC1-complete under NC0 reductions. Some of them are even
NC1-complete under projections.

The group of all permutations over a set with five elements, also known as S5, is the standard
example of a non-solvable group. Hence studying whether S5 is in ACC0 or TC0 is a fundamental
and difficult open problem.

4.1.2 Depth hierarchy

We saw that the depth hierarchy of AC0 is strict. This non equality of the levels of the hierarchy
can also be witnessed by regular languages. We will even exhibit a family of languages that
are complete for every level of the hierarchy. A language L is said to be AC0-complete under
projections if every language of AC0 admits a polynomial size projection to L. We draw on ideas
from [16, 77, 22].

The class of regular languages of interest is the set of Boolean formulae of bounded depth i
and bounded bottom fan-in j, denoted by Oji and Aji . For the ith level, the alphabet is the set
Ai = {0,1} ∪ {#k | 1 ≤ k ≤ i}.

Oj0 = {w1 · · ·wj | ∀k, |wk | = j and ∃k,wk = 1j }

Aj0 = {w1 · · ·wj | ∀k, |wk | = j and ∀k, |wk |1 ≥ 1}

Oji = A∗i#iA
j
i−1#iA

∗
i

Aji = (#iO
j
i−1)∗#i

4.1. Separations witnessed by regular languages 67

Lemma 4.4.
For all i, j ∈N, the languages Oji and Aji are respectively in Σ

j
i and Π

j
i .

Proof. We proceed by induction on i. For i = 0, we can recognise the finite language Oj0 with the
family of circuits whose only non empty circuit is the one of size j2. This circuit then groups
the inputs into j groups of size j, and aggregates them with an ∧-gate. Those j ∧-gates are
grouped with an ∨-gate. The case Aj0 is dual with the inversion of ∧-gates and ∨-gates.

Let i ≥ 1. The top gate recognising Oji is an ∨-gate ranging over all couples of positions k < l.

It is fed by a Π
j
i−1 circuit which is

C ∧#i(xk)∧#i(xl)

where C is the Π
j
i−1 circuit recognising Aji−1 given by the induction. Notice that the circuit is

indeed in Π
j
i−1 because the two extra ∧-gates can be absorbed by the top gate of C.

The case Aji is dual with a top ∧-gate and an intermediate circuit

C ∨¬#i(xk)∨¬#i(xl)

where C is the Σ
j
i−1 circuit recognising Oji−1 given by the induction. The negation is not an

issue as it can be reformulated as an ∨-gate of all a(xi) where a is a letter different than #i .
□

We can prove the completeness theorem.

Theorem 4.5.
For all i, j ∈N, the languages Oji and Aji are respectively Σ

j
i -complete and Π

j
i -complete under

projections.

Proof. Let L be a language recognised by a Σ
j
i -circuit (Cn). Let p be the polynomial that bounds

the size of the circuit. The case Π
j
i is analogous. If i = 0, Cn is an ∨-gate fed by less than

j ∧-gates, themselves fed by less than j inputs. We can plug 0 to the ∨-gates and 1 to the
∧-gates to compute the same language with the fan-in of every gate being precisely j. Let ink
for 1 ≤ k ≤ j2 be the tuple of inputs in the order of appearance in Cn, ie the first j are the inputs
of the first ∧-gate, and so on. The projection is the Oj0 circuit with j2 inputs and such that the
kth input is wired to ink .

If i ≥ 1. We expand Cn into a tree, that is to say that each node as fan-out 1. This is done by
duplicating shared nodes. Thanks to the constant depth, the circuit remains in Σ

j
i . We again

number the inputs in order ink for 1 ≤ k ≤ p(n). The projection is the Oji -circuit with less than
2p(n) inputs. The wiring is the following: the first inputs take the constant #i , then the next
ones take the wiring given for the first Πj

i−1 circuit. We proceed in this fashion for at most a
polynomial number of inputs, then we wire a last #i . □

This allows to show that there are regular languages in Σi not in Σi−1 for every i. Indeed, at
least one of the Oji must not be in Σi−1. If it were not the case, every language L of Σi would

68 CHAPTER 4. Regular Languages and Circuit Classes

belong to some Σ
j
i , and hence would admit a polynomial size projection to Oji . This would imply

that L is in Σi−1, yielding Σi = Σi−1. This contradicts Theorem 3.19 of the separation of the depth
hierarchy. It is worthy to note that once again the existence of regular complete languages gives
that the separation by any language implies the separation by a regular language.

4.1.3 Importance of the addition function

Adding two numbers is the first mathematical operation taught in school. We can define the
function (binary) ADDITION that takes 2n inputs and outputs the n+ 1 bits of the sum of the
two integers over n bits given in input. We assume as a convention that the most significant bit
is on the right. An algorithm to compute it is very simple: add the digits from left to right, and
whenever the sum is greater than 2, we have to propagate a carry. This immediately gives that
we can compute addition with a linear size circuit, but with a linear depth. Nevertheless, it is
possible to compute the local sums and propagate the carry in parallel. This implies

ADDITION ∈ AC0.

The next natural question is can we show whether ADDITION is in the class LAC0 or not. This
question was already identified in the seminal paper of Furst, Saxe and Sipser on PARITY [41],
and remains unsolved to this day. Thanks to the graph-theoretic technics of superconcentrators,
it can be shown that ADDITION is not in WLAC0. Hence ADDITION (to be more precise, the
language defined by the right-most output bit) is a regular candidate to separate WLAC0 and
LAC0. We recall that we know that the two classes are distinct. We also recall that we can separate
LAC0 and AC0, but we do not know if it can be done by a regular language.

Completeness. In addition of finding the precise complexity ADDITION, this function also
has tight links with the class AC0. We define a class of circuits that can only perform additions.

Definition 4.6.
An ADD-circuit is a Boolean circuit with a constant number of gates labelled by the addition
functions (and no other gates). It is asked that the gates have polynomial fan-in. The output
of the circuit is a distinguished wire of one of the addition gates.

The class of ADD-circuits is called ADD0.

In particular, an ADD-circuit has polynomially many edges. This class is clearly included
in AC0, as we can perform an addition in AC0. The other direction, while not difficult, is much
more interesting: we can emulate the whole AC0 class with only a constant number of additions.

Theorem 4.7.
We have the language classes equality

ADD0 = AC0.

Proof. We prove AC0 ⊆ ADD0. Let L be a language defined by the circuit C. Let d be the depth
of the circuit and p(n) its size where p is a polynomial. It is usual to assume that the circuit
is layered: we can split the gate into d layers, each gate of layer i getting fed by gates from

4.2. Straubing properties 69

layer i − 1. Here, we convert every ∨-gates into an ¬-gate of an ∧-gate of ¬-gates, thanks to De
Morgan’s laws. The circuit hence only has ∧-gates and ¬-gates. We will encode each layer by a
single addition gate.

First, assume we want to compute an ∧-gate of inputs x1, . . . ,xm. The requested circuit is a
single addition gate fed with x1, . . . ,xm and m− 1 0s and one 1. The most significant bit of the
output is 1, that is to say the carry overflowed, if and only if all of the xi are 1s.

Secondly, assume we want to compute a ¬-gate of a single input x. This can be seen as the
addition of x and 1, in the least significant digit of the answer.

Last, assume we want to compute a bunch of ∧-gates and ¬-gates at the same time. We will
compute all the gates of layer i at the same time. Let j be its number of gates and for 1 ≤ k ≤ j
let vk , wk be the vectors of inputs such that gate k is computed with the addition of vk and wk .
In particular, they have the same size. The wanted circuit is the addition of the concatenation
v1,0,v2,0, . . . ,0,vj and the concatenation w1,0,w2,0, . . . ,0,wj . The output is the local most (or
least) significant bit according to the type of the gate. The plugged 0s ensure that the different
computation do not interfere with each other.

□

This theorem means that the addition is complete for AC0 in a very strong sense (though
weaker than projections). When dealing with the regular languages in AC0, that is to say star-
free languages, the theorem can be strengthened thanks to a result of Paperman, Salvati, and
Soyez-Martin [89].

Theorem 4.8 ([89, theorem 6]).
Every regular language of AC0 can be computed with an ADD0-circuit with linear fan-in, and
hence linearly many wires.

Proof. In [89], the result is stated in the framework of the so-called ADD-vectorial circuit.
These circuits have access to addition gates, as well as vectorial versions of ¬, ∧, pref-∧, pref-∨,
suf-∧, suf-lor, MSB and LSB. The prefix and suffix gates have n inputs and n outputs containing
the ∧ or ∨ of the first (resp last) inputs. MSB (resp. LSB) takes the first (resp. last) input that
is 1 and flips it to 0. They construct an ADD-vectorial circuit with constantly many gates. By
construction, they demand that their addition gates have to be of linear size. We have to see
that we can remove the other type of gates to only have addition gates. The ∧-gates and ¬-gates
are like in the previous proof. A pref-∨ is the negation of the addition of the input with the all
1s vector of the same size. The other prefix and suffix functions are similar. We can compute
MSB and LSB with similar bit tricks. □

This implies that if ADDITION is in LAC0, then every regular language is in LAC0. The
contrapositive is interesting as well, a lower bound for LAC0 for any regular language implies
that ADDITION is not in LAC0.

All the relations between circuit classes that we have seen are summarised in Fig. 4.1.

4.2 Straubing properties

We have seen that many circuit classes that are distinct possess regular languages that witness
the separation. We can take this one step further, and study precisely what are the regular
languages in circuit classes. This is reminiscent of the consideration of the membership problem
for regular languages. Indeed, designing an algorithm that answers if a given regular language is

70 CHAPTER 4. Regular Languages and Circuit Classes

in some class often enlightened us on the properties for said class. We defend in this thesis that
regular languages are the backbone of circuit classes, and identifying them help to shed lights on
their complicated behaviour. This have been achieved for a few classes that we will present here.

4.2.1 Statement

Straubing, in his book [126], presented a unified conjecture using logic to approach the problem.

Definition 4.9.
Let F be a logical fragment. We say that the Straubing property holds for F if

F[arb]∩Reg = F[reg].

Note that Straubing only made the conjecture that the Straubing property holds for logical
fragments using existential and modular quantifiers. As we will see, the conjecture is false in
general, hence the need to distinguish the fragments within which the Straubing property holds.

This property is important because it identifies the regular language in the non-uniform
complexity class defined by F[arb]. Combined with the power of algebra, it may even yield decid-
ability of F[arb]∩Reg. Moreover, it states that any formula of F with any arbitrary complicated
predicates that defined a simple regular language can be rephrased with only regular predicates.
In other words, the extra power given by arbitrary predicates is useless when defining regular
languages.

To prove that a fragment has the Straubing property, there is a general recipe that can be
applied. It highlights the interplay between algebra and combinatorics, most of the time of
circuits. Of course, having a recipe does not mean that proving such properties is easy: proving
lower bounds is notoriously difficult.

• Remark that by the definition of regular predicates, F[reg] only defines regular languages.
Therefore all is left to do is to take a regular language not in F[reg] and show that it is not
in F[arb].

• Prove that F[reg] and F[arb]∩Reg are lm-varieties of stamps.
• Identify algebraically F[reg].
• Use this knowledge to find a class of regular languages for which a lower bound against

F[arb] has to be found. An equivalent circuit form might be useful.

Sometimes, using lm-varieties is uneasy. Indeed, the algebraic part of the proof schemes
often requires to prove that a variety of monoids is local, which is difficult. It even happens that
the variety in question is not local, in which case even more algebraic work has to be done. This
calls for a restricted version of the Straubing property, with neutral letters, that retains most of
its interest and combinatorial flavour.

Definition 4.10.
Let F be a logical fragment. We say that the neutral Straubing property holds for F if

F[arb]∩Reg∩Neut = F[<]∩Neut.

The neutral Straubing property is almost always weaker than the Straubing property. This is
the case whenever adding local numerical predicates and local letter predicates gives the same
languages.

4.2. Straubing properties 71

Lemma 4.11.
Let F be a fragment such that F[<] is a monoid variety and F[<, loc] = F[<, locα]. Then F has
the neutral Straubing property if F has the Straubing property.

Proof. We first prove that
F[reg]∩Neut = F[<]∩Neut.

This is enough to conclude by intersecting both sides in the Straubing property by Neut. We
write F[reg] = F[<, loc,mod] = F[<, locα ,mod]. Let V be the variety of monoids associated to
F[<]. By Theorem 2.22, F[<, locα] is associated to V ∗D. By Theorem 2.23, F[<, locα ,mod] is
associated to V ∗D ∗MOD. Now if a language in F[reg] has a neutral letter, its syntactic stamp
is in V ∗D ∗MOD and then is in V. In this case, it is also in F[<] concluding the proof. □

4.2.2 Positive examples

We illustrate the recipe with FO. We first prove that FO[arb]∩Reg satisfies the wanted closure
properties.

Lemma 4.12.
The class FO[arb]∩Reg is a lm-variety of languages.

Proof. We show all three points that define lm-varieties for FO[arb] = AC0, since we already
know that they stand for regular languages.

• Boolean operation: First-order formulae are closed by definition under ∧, ∨ and ¬.
• Quotients: Let L ∈ FO[arb] and a be a letter. Consider the circuit for the words of length
n in L. We can hardwire the first letter to a, the resulting circuit has n− 1 inputs, and
recognises a word w if and only if w ∈ L. The family thus obtained recognises a−1L. The
argument for right quotient is similar.

• lm-morphisms: Let L over the alphabet B and h be an lm-morphism such that h(A) ⊆ Bk
for some k. Consider the circuit for the words of L of length kn for some n. Given a word
in An , we can use NC0-circuits to map each input letter a ∈ A to h(a), and we can feed the
resulting word to the circuit for L. A word w ∈ An is thus accepted if and only if h(w) ∈ L,
hence the circuit family thus defined recognises h−1(L).

□

This proof emphasises why the length-multiplying assumption in the definition of lm-
varieties is needed when dealing with circuits. We recall that A is the class of aperiodic monoids
and that Q is the operator introduced in Section 2.4 to study the addition of modular predicates.

Theorem 4.13 (Barrington, Compton, Straubing, and Thérien[14, theorem 3]).
The fragment FO has the Straubing property:

AC0 ∩Reg = FO[arb]∩Reg = FO[reg] = QA.

72 CHAPTER 4. Regular Languages and Circuit Classes

Proof. Obviously, FO[reg] ⊆ FO[arb]∩Reg. We already know by Example 2.26 that FO[reg] is a
lm-variety of stamps equal to QA. Take a regular language L not in QA, we want to show that it
is not in AC0. Let its syntactic monoid be M and syntactic morphism be µ. Let s be its stability
index. It means that Ms, the stable monoid of M, is not in A. Hence there exists a word w of
size s such that

µ(w)ω+1 , µ(w)ω.

Let q the smallest integer such that µ(w)ω+q = µ(w)ω. By the property of the stable monoid, we
can find two words of size s such that µ(w)ω+1 = µ(u) and µ(w)ω = µ(v).

We will show that if L were to be AC0, then MODq would be as well. This would lead to a
contradiction by Lemma 3.18. Thanks to the fact that F[arb]∩Reg is a lm-variety, L′ = µ−1(µ(v))
is also in AC0. We need a gadget that takes a single input bit, and outputs the encoding of u on
input 1, and the encoding of v otherwise. To construct a circuit C of size n, we put one such
gadget under each input, giving a word x. There is beneath it an AC0 circuit for L′, being fed
by x. The monoid value µ(x) is a concatenation of µ(u) and µ(v), and satisfies

µ(x) = µ(w)n·ω+p = µ(w)ω+r

where p is the number of 1s in the input and r is the remainder in the Euclidean division of p
by q. If p is divisible by q, then r = 0 and µ(x) = µ(v) hence the circuit is accepting. Otherwise,
0 < r < q and µ(x) , µ(v) and the circuit is not accepting. This gives an AC0 circuit for MODq.

□

We list in the following the fragments for which we know that the Straubing property holds.
For p a prime integer, the variety Mp

sol is the class of monoids whose groups are solvable and size
a power of p.

Theorem 4.14 (Barrington, Compton, Straubing, and Thérien[14, theorem 5]).
Let p be a prime integer. The fragment FO + MOD[p] has the Straubing property:

ACC0[p]∩Reg = (FO + MOD[p])[arb]∩Reg = (FO + MOD[p])[reg] = Mp
sol .

It can be extended to show that ACC0 can do all ofMsol . Combined with Barrington’s theorem
(Theorem 4.3), it implies that the regular languages of ACC0 (with non prime moduli) are either
precisely Msol or every regular languages.

Concerning, the quantifiers alternation hierarchy (or equivalently the depth hierarchy of
AC0), the Straubing property is only known to hold for the first levels.

Theorem 4.15 (Krebs, Straubing [73]).
The Straubing property holds for Σ1 and BΣ1:

Σ1[arb]∩Reg = Σ1[reg]

BΣ1[arb]∩Reg = BΣ1[reg]

When applying the recipe, the proof by contradiction tells us that every regular language
that can be defined with arbitrary predicates can be restated with only regular predicates, but
does not construct such a sentence. The only case for which a direct constructive proof has been
found is for Σ1 and BΣ1. The case for Σ2 is the subject of Chapter 5.

4.2. Straubing properties 73

There are also classes for which we can identify the regular languages within, without
an equivalent logical formalism to properly state a Straubing property. We recall that DA
is the variety of aperiodic monoids such that all J -classes that contain one idempotent only
contain idempotents, and that Q and L are the operators introduced during the study of regular
predicates in Section 2.4.

Theorem 4.16 (Koucký, Pudlak, and Therien[72, theorem 14], Cadilhac and Paperman[23]).
The regular languages of WLAC0 are identified. In symbols:

WLAC0 ∩Reg = QLDA.

The first group of authors showed it for regular languages with a neutral letter, the second
one extended it to the full statement.

A result that does not appear in the literature, but that is easy to obtain thanks a known
lower bound concerns AC0 circuits enhanced with a logarithmic number of maj-gates. We can
prove they cannot do more regular languages than AC0.

Theorem 4.17.
The regular languages computable with an AC0 circuit with O(log(n)) maj-gates are exactly
the regular languages of AC0, that is to say QA.

Proof. The proof is the same as the proof of Theorem 4.13. This class of circuits is wider than
AC0 and therefore can compute every language in QA. For q ∈N, the same reduction works to
show that the existence of a circuit for MODq contradicts Theorem 3.23. □

4.2.3 First negative example: FO + S5

The local predicates are all expressible in first-order logic, hence we can rewrite the local
predicates in a FO + S5 sentence, to obtain a sentence without them. For instance, x = y + 1 get
replaced by

∀z, x ≤ z ≤ y⇒ (z = x∨ z = y).

This implies that (FO + S5)[reg] = (FO + S5)[<,mod]. In particular, this fragment falls into the
precondition of Lemma 4.11. We will then only show that FO + S5 does not have the neutral
Straubing property. This will imply that the Straubing property does not hold as well.

First of all, the quantifiers over S5 hint a link to Barrington’s theorem.

Lemma 4.18.
We have the following

Reg ⊆ Lin(S5)[arb].

This implies the same expressivity result of the stronger logic FO + S5:

(FO + S5)[arb]∩Reg = Reg.

74 CHAPTER 4. Regular Languages and Circuit Classes

Proof. By Theorem 3.14, Lin(S5)[arb] is equivalent to AC0[S5], a class of circuits that can use
gates labelled by S5. By Barrington’s theorem (Theorem 4.3), every NC1 language, and hence
every regular language, can be computed by a single gate labelled by S5. □

Determining the power of (FO+S5)[reg] requires more work. For G a set of groups, we denote
by [G]A its Krohn-Rhodes closure. It is the closure of G and A by wreath product and division. By
Krohn-Rhodes theorem, [G]A is the variety of monoids that divide a monoid whose Krohn-Rhode
decomposition can only use simple groups that divide G. Barrington, Immerman and Straubing
found a powerful general theorem that we instanciate here for the case under study.

Theorem 4.19 (Barrington, Immerman, and Straubing [12, Theorem 12.1]).
The variety of monoids associated to (FO + S5)[<] is [S5]A.

All is left to do is find a monoid not in [S5]A. Any simple group which does not divides S5
would work. There is a rich mathematical literature on finite simple groups, for instance the
monster group of order

808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000

does not divides S5.
We can now conclude.

Theorem 4.20.
The fragment FO + S5 does not have the Straubing property:

(FO + S5)[reg] ⊊ (FO + S5)[arb]∩Reg.

We can deduce the same theorem for the logic with usual quantifiers.

Corollary 4.21.
The fragment Lin(S5) does not have the Straubing property:

Lin(S5)[reg] ⊊ Lin(S5)[arb]∩Reg.

Proof. By Lemma 4.18, Lin(S5)[arb] ∩ Reg = Reg. Moreover, Lin(S5)[reg] ⊆ (FO + S5)[reg] ⊊
Reg. □

4.2.4 Second negative example: FO ◦MOD ◦FO

For the same reason as at the beginning of Section 4.2.3, FO ◦MOD ◦FO can express every local
predicate, hence it satisfies the precondition of Lemma 4.11. We then focus on disproving the
neutral Straubing property for FO ◦MOD ◦FO. Note that it is specific to fragments that impose
an order on the standard and modular quantifications. No new insight is given towards the
Straubing property for FO + MOD, whose status is still unknown.

As before, we rely on an unexpected circuit result that gives unreasonable power to (FO ◦
MOD◦FO)[arb]. This time it follows the fact that all of ACC0 can be simulated with a probabilistic

4.2. Straubing properties 75

circuit with only mod-gates. Hansen and Koucky proved that, and gave a derandomisation
procedure for the latter model. From that they give the following theorem, where Σ2 ◦CC0 is the
class of circuits with a top ∨-gate, a bunch of ∧-gates, and then CC0 circuits:

Theorem 4.22 (Hansen and Koucky [57, Corollary 4.7]).
The following circuit classes are equivalent:

ACC0 = Σ2 ◦CC0 = Π2 ◦CC0.

This implies that (FO ◦MOD ◦FO)[arb], with equivalent circuit class is the class of circuits
with at most two alternations between mod-gates and other type of gates, can do all the regular
languages in ACC0.

Lemma 4.23.
We have

Msol ⊆ (FO ◦MOD ◦FO)[arb]∩Reg.

We can use the same result as in Theorem 4.19, to characterise (FO ◦MOD ◦FO)[reg].

Lemma 4.24.
We have

(FO ◦MOD ◦FO)[reg] ⊆A ∗G ∗A.

Proof. We overapproximate the mod-gates by gates labelled by any groups. Analysing the
proof of [12] gives that alternation between group quantifiers and usual quantifiers gives the
alternation between wreath products of aperiodic monoids and groups. □

All is left to do is find a monoid in Msol not in A ∗G ∗A. Let M3(Z/2Z) be the monoid of 3×3
upper triangular matrices over Z/2Z with matrix multiplication. An element of M3(Z/2Z) is a
matrix: x11 x12 x13

0 x22 x23
0 0 x33


where xij ∈Z/2Z.

It is known that the Krohn-Rhodes complexity hierarchy, that computes the number of
alternation between aperiodic monoids and groups, is strict. This separation is in particular
witnessed by monoids of upper triangular matrices.

Lemma 4.25 (Kambites [67]).
The monoid M3(Z/2Z) has Krohn-Rhodes complexity 2. In particular, M3(Z/2Z) <A ∗G ∗A.

To conclude, we have to see that this monoid is in Msol . For that, we use the well known fact
that the smallest non-solvable group, a subgroup of S5, has 60 elements. The monoid M3(Z/2Z)

76 CHAPTER 4. Regular Languages and Circuit Classes

having 26 = 64, we fall short of a very simple proof that it is a solvable monoid. We have to
look at it in more detail. We call a matrix invertible if it has only ones on the diagonal. There
are 8 invertible matrices and 56 non-invertible matrices. It is easy to see that multiplying a
non-invertible matrix by anything gives a non-invertible matrix. This implies that invertible and
non-invertible matrices are never J equivalent. So any group in M3(Z/2Z) has cardinality at
most 56, and is therefore solvable.

Theorem 4.26.
The fragment FO ◦MOD ◦FO does not have the Straubing property:

(FO ◦MOD ◦FO)[reg] ⊊ (FO ◦MOD ◦FO)[arb]∩Reg.

It allows to deduce a few other falsifications of Straubing properties, for subfragments of
FO ◦MOD ◦FO that are expressive enough to apply Theorem 4.22.

Corollary 4.27.
Let i ≥ 2. The following fragments do not have the Straubing property:

• Σi ◦MOD,
• Πi ◦MOD,
• FO ◦MOD,
• Σi ◦MOD ◦FO,
• Πi ◦MOD ◦FO.

Bibliography of the current chapter

[12] David Barrington, Neil Immerman, and Howard Straubing. “On uniformity within NC1”.
In: July 1988. doi: 10.1109/SCT.1988.5262.

[13] David A. Barrington. “Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1”. In: Journal of Computer and System Sciences 38 (1989).
doi: 10.1016/0022-0000(89)90037-8.

[14] David A. Barrington, Kevin Compton, Howard Straubing, and Denis Thérien. “Regular
languages in NC1”. In: Journal of Computer and System Sciences 44.3 (1992). doi: 10.1016/
0022-0000(92)90014-A.

[16] David A. Mix Barrington and Denis Thérien. “Finite monoids and the fine structure of
NC1”. In: J. ACM 35.4 (1988). doi: 10.1145/48014.63138.

[22] S. R. Buss. “The Boolean formula value problem is in ALOGTIME”. In: Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing. STOC ’87. New York, New
York, USA: Association for Computing Machinery, 1987. doi: 10.1145/28395.28409.

[23] Michaël Cadilhac and Charles Paperman. The Regular Languages of Wire Linear AC 0. en.
Dec. 2021. doi: 10.1007/s00236-022-00432-2.

[41] Merrick Furst, James B Saxe, and Michael Sipser. “Parity, circuits, and the polynomial-
time hierarchy”. en. In: (1984). doi: 10.1007/BF01744431.

https://doi.org/10.1109/SCT.1988.5262
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1145/48014.63138
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/s00236-022-00432-2
https://doi.org/10.1007/BF01744431

Bibliography of the current chapter 77

[57] Kristoffer Arnsfelt Hansen and Michal Koucký. “A New Characterization of ACC0 and
Probabilistic CC0”. en. In: computational complexity 19.2 (May 2010). doi: 10.1007/
s00037-010-0287-z.

[67] Mark Kambites. “On the Krohn–Rhodes complexity of semigroups of upper triangular
matrices”. In: International Journal of Algebra and Computation 17.01 (2007). doi: 10.
1142/S0218196707003548.

[72] Michal Koucký, Pavel Pudlak, and Denis Therien. “Bounded-depth circuits: Separating
wires from gates”. In: May 2005. doi: 10.1145/1060590.1060629.

[73] Andreas Krebs and Howard Straubing. Regular languages defined by first-order formulas
without quantifier alternation. Aug. 2022. doi: 10.48550/arXiv.2208.10480.

[77] Nancy A. Lynch. “Log Space Recognition and Translation of Parenthesis Languages”. In:
J. ACM 24 (1977). doi: 10.1145/322033.322037.

[89] Charles Paperman, Sylvain Salvati, and Claire Soyez-Martin. “An Algebraic Approach
to Vectorial Programs”. In: 40th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2023). Ed. by Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and
Mamadou Moustapha Kanté. Vol. 254. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi: 10.4230/LIPIcs.STACS.2023.51.

[126] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. en. Boston, MA:
Birkhäuser, 1994. doi: 10.1007/978-1-4612-0289-9.

https://doi.org/10.1007/s00037-010-0287-z
https://doi.org/10.1007/s00037-010-0287-z
https://doi.org/10.1142/S0218196707003548
https://doi.org/10.1142/S0218196707003548
https://doi.org/10.1145/1060590.1060629
https://doi.org/10.48550/arXiv.2208.10480
https://doi.org/10.1145/322033.322037
https://doi.org/10.4230/LIPIcs.STACS.2023.51
https://doi.org/10.1007/978-1-4612-0289-9

78 CHAPTER 4. Regular Languages and Circuit Classes

Part II

Results on Regular Languages

Chapter5
Circuit Complexity: the Regular
Languages of Σ2

Outline of the current chapter

5.1 Lower bounds against Σ2[arb] 82
5.1.1 Limits . 82
5.1.2 Sunflower lemma . 83
5.1.3 Tangledness . 84

5.2 Warm-up : (ac∗b+ c)∗ < Σ2[arb] 86
5.3 Neutral Straubing property 88

5.3.1 If a language not in Σ2[<] is in Σ2[arb], we can separate Good from
Bad with a language in Σ2[arb] . 89

5.3.2 No language in Σ2[arb] separates Good from Bad 90
5.4 Full Straubing property 92

5.4.1 Category theory . 93
5.4.2 Adaptation of the proof . 97

5.5 Going further 101

This chapter is based on the paper “The Regular Languages of First-
Order Logic with One Alternation”, which is joint work with Michaël
Cadilhac, Charles Paperman and Thomas Zeume [10]. The result of
Section 5.4 is new.

In Chapter 4, regular languages were advocated to be the backbone of circuit complexity for
numerous reasons. Thanks to the framework of logic, Howard Straubing emitted a conjecture
on the form of regular languages inside circuit classes (Definition 4.9). This Straubing property
has been shown to hold for a handful of logic classes and not to hold for even fewer classes. Its
status remains open for plentiful natural logics. We investigate in this chapter the fragment Σ2
of formulae with a single alternation of quantifiers and that start with an existential quantifier.
We show that this fragment has the Straubing property, giving the first significant progress on
the study of Straubing properties in more than 20 years. In a first part, we prove the neutral

81

82 CHAPTER 5. The Regular Languages of Σ2

Straubing property (Definition 4.10) thanks to new lower bounds against depth-3 Boolean
circuits. Then we use the power of finite categories to study the addition of regular predicates
into Σ2[<] (whose study started in Section 2.4), to obtain the Straubing property for Σ2 in its full
generality.

5.1 Lower bounds against Σ2[arb]

We will exclusively use Lemma 3.13 that states that the logic Σ2[arb] and the circuit class Σ2
can express the same languages. The combinatorial essence of circuits will be useful in proving
lower bounds. After presenting limits, that will fool depth-3 circuits, we will present two way
of finding them. The first one, sunflowers, is simpler to use and is only needed to carry out the
warm-up in Section 5.2. The second one, tangledness, is more involved but is powerful enough to
have lower bounds to prove the Straubing property for Σ2.

5.1.1 Limits

The class of circuits under study has depth 3 (with the last layer of bounded fan-in). We reuse
techniques developed by Håstad, Jukna and Pudlàk in [58]. Therein, the paternity of the idea is
given to Sipser [120]. These ideas are exposed in chapter 11.3 of a book of Jukna [65]

Definition 5.1.
Let F be a set of words, all of same length n, and k > 0. A k-limit for F is a word u of length n
such that for any set of k positions, a word in F matches u on all these positions. In symbols,
u satisfies:

∀P ∈ {1, . . . ,n}k , ∃v ∈ F, ∀p ∈ P , up = vp.

Any non-empty set of words F possesses a k-limit for every k: any word in F satisfies the
property. However, we will only be interested in k-limits outside of F, and even outside of a
superset of F.

Lemma 5.2 (Håstad, Jukna, and Pudlàk[58, Lemma 2.2]).
Let L be a set of words all of same length n and C be a Σ2 circuit that accepts at least all the
words of L. Let k be the top fan-in of C and s its size.

Assume there is a subset L′ ⊆ L such that for any F ⊆ L′ of size at least |L′ |/s there is a
k-limit for F that does not belong to L. Then C accepts a word outside of L. The hypothesis
can be represented graphically as:

∃L′ ∀F
|F | ≥ |L′|/s

∃u
k-lim. for F

L

1

5.1. Lower bounds against Σ2[arb] 83

Proof. At the bottom of C, we have an ∨-gate of fan-in at most s that receives the result of some
∧-gates. By counting, one of these ∧-gates should accept a subset F of L′ of size at least |L′ |/s;
we will now focus on that gate. Let u < L be the k-limit for F that exists by hypothesis. Consider
an ∨-gate that feeds into the ∧-gate under consideration. This ∨-gate checks the contents of
a subset P ⊆ [n] of at most k positions of the input. By hypothesis, there is a word v in F that
matches u on all the positions in P , hence the ∨-gate cannot distinguish between u and v and
must output 1 (true) on u as v must be accepted. This holds for all the ∨-gates feeding into the
∧-gate under consideration, hence the ∧-gate must accept u, and so does C. □

We immediately deduce from this statement a combinatorial property on a language for its
non-expressibility by a Σ2 circuit.

Corollary 5.3.
Let L be a language and write Ln for the subset of words of length n in L. Assume that for any
k,d ∈N, there is an n ≥ 2 and a subset L′ ⊆ Ln such that every subset F ⊆ L′ of size at least
|L′ |/nd admits a k-limit outside of L. Then L is not in Σ2[arb].

Proof. For a contradiction, assume there is a Σ2 circuit family for L, with top fan-in k and size
nd for n ≥ 2. Let n be the value provided by the hypothesis, then the circuit C for Ln satisfies
the hypotheses of Lemma 5.2, hence C accepts a word outside of L, a contradiction. □

5.1.2 Sunflower lemma

To find limits, we need a tool from extremal combinatorics: the renowned Erdős-Rado sunflower
lemma. We consider families F containing sets of size s for some s. The core of a family F is the
set

Y =
⋂
X∈F

X.

The core of a family F may be the empty set. A sunflower is a family F in which the intersection
between any two distinct sets in F is always Y . In other words, the mutual intersection is equal
to any pairwise intersection. In this case, the size of F is its number of petals. Ërdos and Rado
proved that any family big enough has to contain a large sunflower.

Lemma 5.4 (Erdős, Rado [38]).
Let F be a family of sets of size s and p ≥ 1. If |F | > s!(p − 1)s then F contains a sunflower
with p petals.

Families of size (p − 1)s without a sunflower with p petals have been found. Refining the bound
of F so that it contains a sunflower is a major open problem. The current record holders are
Alweiss, Lovett, Wu and Zhang [6] and Rao [107] with a lower bound of order (p log(ps))s.

For our lower bounds, we will adopt a weaker version of sunflower, that will give better
bounds. The coreless version of a family F with core Y is the family

FY = {X\Y | X ∈ F }.

A sunflower is precisely the family such that FY is a family of pairwise disjoint sets. We relax
this condition so that FY has only few intersections. A set X intersects a family F if all the sets
of F have a non-empty intersection with X.

84 CHAPTER 5. The Regular Languages of Σ2

Definition 5.5.
A flower with p petals is a family F of sets of the same size s and core Y such that there are no
sets of size strictly less than p that intersect FY .

This new notion has a theorem that looks like the sunflower lemma. It was stated in [58] and
is exposed, with other flower-related notions, in a book of Jukna [66].

Lemma 5.6 (Jukna [66, lemma 6.4]).
Let F be a family of sets of size s and p ≥ 1. If |F | > (p −1)s then F contains a flower with p
petals.

5.1.3 Tangledness

After introducing the sunflower lemma for the warm-up in Section 5.2, we present a novel
combinatorial tool tailored for lower bounds against languages not in Σ2[reg].

Let Φ be a set of words of size n over alphabet of size m. The entailment relation of Φ is
relating sets of pairs (i, c) of position/letters in words of Φ . Let us say that a word and a pair
position/contents (i, c) agree if the letters at position i of the word is c, and that a word and a set
of such pairs agree if the word agrees with each pair. We write S ▷u when a word u and a set S
of pairs position/contents agree:

S ▷u iff ∀(i, c) ∈ S, ui = d.

We say that a set of pairs is an i-set if all its pairs have i as position.
A set S of pairs position/letters entails an i-set D if all words in Φ that agree with S also

agree with some pair of D (in which case the pair is unique); additionally, the position i should
not appear in S. In this case we write S ⊢D. In symbols:

S ⊢D iff ∀c, (i, c) < S∧
∀u ∈ Φ , S ▷u⇒ [∃(i, c) ∈D, ui = c].

A set of words is called k-tangled if every position of a word is entailed by a subset of size k
of its positions. We make this definition precise.

Definition 5.7.
A set of words Φ is said to be k-tangled if for any word u ∈ Φ and any position i ≤ n, there are:

• an i-set D of pairs of size ≤ k that contains (i,ui),
• a set S of pairs of size k that agrees with u,

such that S ⊢D.

We drop the k in k-tangled if it is clear from context. Our lemma asserts that tangled sets
cannot have large cardinality.

5.1. Lower bounds against Σ2[arb] 85

Lemma 5.8.
Let k be an integer. Let Φ be a set of words of size n over an alphabet of size m ≥ 29k2

.
If Φ is k-tangled, then |Φ | < m2kn/(2k+1).

Proof. Assume Φ is k-tangled. We show that every word in Φ can be fully described in Φ by
fully specifying a portion k/(k + 1) of its positions and encoding the letters of each of the other
1/(k + 1) positions with integer between 1 and k. That is, if two words in Φ have the same such
description, they are the same, hence Φ cannot be larger than the number of such descriptions.
We first show this property, then derive the numerical implication on |Φ |. We moreover make
the technical assumption that n is a multiple of k + 1 so as not to bother with integrability
issues.

Let u ∈ Φ , we construct iteratively a set K of positions that we will fully specify and a set
K+ of positions that are restricted when setting the positions in K .

First consider the pair (1,u1). Since Φ is tangled, there is an 1-set containing (1,u1), entailed
by a set S that agrees with u. We add to K the positions of S and to K+ the positions of S and
position 1.

We now iterate this process: Take a pair (i,ui) such that i < K+. There is an i-set containing
(i,ui) that is entailed by a set S that agrees with u. Let S ′ be the set of positions of S that are
not in K+. We add S ′ to K , and S ′ ∪ {i} to K+. Note that the size increase for K+ is one more
than that for K . We continue iterating until all positions appear in K+.

We now bound the size of K at the end of the computation. For each iteration, in the worst
case, we need to add k positions to K to obtain k + 1 new positions in K+ (this is the worst
case in the sense that this is the worst ratio of the number of positions we need to pick in K
to the number of positions that are put in K+). In that case, after s steps, we have |K | = sk and
|K+| = sk + s. Thus when |K+| = n, that is, when no more iterations are possible, we have:

sk + s = n⇒ s =
n

k + 1
.

This shows that |K | ≤ kn/(k + 1).
We now turn to describing the word u using K . We first provide all the letters of u at

positions in K ; call Z the set of pairs position/letters of µ that correspond to positions in K . We
mark the positions of K as specified, and carry on to specify the other positions in a deterministic
fashion.

We first fix an arbitrary order on sets of pairs of position/letters. We iterate through all
the subsets of Z of size k, in order. For each such subset S, we consider, in order again, the
subsets D that are entailed by S. Assume D is an i-set; if position i is already specified, we do
nothing, otherwise, we describe which element of D is (i,ui) using an integer between 1 and [k],
and mark i as specified. We proceed until all the subsets of Z have been seen, at which point,
by construction of K , all the positions will have been specified. As claimed, given Z and the
description of which elements in sets D correspond to the correct letters, we can reconstruct u.

Summing up, to fully describe u, we had to specify the positions of K (one of
(n
kn/(k+1)

)
possible choices), their letters (one of mkn/(k+1) possible choices), and for each position not
specified by K , we needed to provide an integer between 1 and k (one of kn/(k+1) possible
choices). This shows that:

86 CHAPTER 5. The Regular Languages of Σ2

|Φ | ≤
(

n
kn/(k + 1)

)
·mkn/(k+1) · kn/(k+1)

< 2n · 2(n/(k+1))(k logm) · 2(n/(k+1)) logk

= 2(n/(k+1))((k+1)+k logm+logk)

≤ 2n/(k+1))((k+ 1
3k) logm) (m large enough)

=m(k+ 1
3k)n/(k+1) ≤m2kn/(2k+1).

□

This lemma is reminiscent of a result of Meier and Widgerson [80, Corollary 1.6]. Therein,
random strings over {0,1}n are considered. They show that if a random string has high entropy
(ie. is very uncertain), then the average over indices of the probability that an index is entailed
by a set of size k is low. Whiletheir setting cover more that the uniform distribution over a subset
of {0,1}n, our result is not on average and works for bigger alphabets (even of size comparable
with n).

5.2 Warm-up : (ac∗b+ c)∗ < Σ2[arb]

Let K be the regular language (ac∗b+ c)∗. In other words, K is the language (ab)∗ with a neutral
letter c. Following [58], we will prove that K is not in Σ2[arb]. This will serve as an introduction
to the proof of the Straubing property of Σ2. Moreover, this language is expressible in Π2[<],
making the lower bound somewhat subtle.

Fact 5.9.
The language (ac∗b+ c)∗ is in Π2[<].

Proof. To see that, the formula is the conjunction of four clauses. A subformula that checks
that the first non-neutral letter is an a:

∀x, [b(x)⇒∃y, y ≤ x∧ a(y)] .

A subformula that checks that the last non-neutral letter is a b:

∀x, [a(x)⇒∃y, y ≥ x∧b(y)] .

A subformula that checks that there is an a between two consecutive bs:

∀x,y, [b(x)∧b(y)⇒∃z, x ≤ z ≤ y ∧ a(z)] .

A subformula that checks that there is an a between two consecutive bs:

∀x,y, [a(x)∧ a(y)⇒∃z, x ≤ z ≤ y ∧b(z)] .

□

5.2. Warm-up : (ac∗b+ c)∗ < Σ2[arb] 87

To show this claim, we consider a slightly different language. For any n that is a perfect
square, we let Goodn be the set of words of length n over {a,b} of the following shape:

n

b · · · bab · · · b

√
n

b · · · bab · · · b

√
n

. . .

1

In words, a word is in Goodn if it can be decomposed into
√
n blocks of length

√
n, such that each

of them has exactly one a. We let Good =
⋃
nGoodn.

Lemma 5.10.
If K is in Σ2[arb] , then so is Good.

Proof. This is easier to see on circuits, so assume there is a Σ2 circuit family for K . For n a
perfect square, we design a circuit for Goodn. On any input, we convert the b’s to c’s and insert
a b every

√
n positions; we call this the expansion of the input word. For instance, with n = 9,

the input abbbabbba is expanded to accbcacbccab. Clearly, if the input word is in Goodn, then
its expansion is in K . Conversely, if a block of the input had two a’s, the expansion will not add
a b in between, so the expansion is not in K ; similarly, if a block of the input contains only b’s,
it will be expanded to only c’s sandwiched between two b’s, and the expansion will not be in K
(in the case where the block containing only b’s is the first one, the expansion starts with c · · ·cb,
again putting the expansion outside of K).

Thus a circuit for Goodn can be constructed by computing the expansion (this only requires
wires and no gates), then feeding that expansion to a circuit for K . If the circuit family for K
were in Σ2, so would the circuit family for Good. □

We use Corollary 5.3 to show that Good < Σ2[arb]. Let then k,d ∈ N. The value of L′ in
Corollary 5.3 will simply be Goodn, and we show:

Lemma 5.11.
If n is large enough, any subset F ⊆Goodn with |F| > k

√
n has a k-limit outside of Goodn. This

holds in particular if |F| ≥ |Goodn|/nd .

Proof. We rely on the flower lemma (Lemma 5.6). To apply this lemma, consider the mapping
τ from words in Goodn to 2[n] that lists all the positions where a word has an a. For instance,
with n = 9, τ(bbaabbbab) = {3,4,8}. For any word w in Goodn, τ(w) is of size

√
n. We let

F = {τ(w) | w ∈ F}.
We now apply the lemma with s =

√
n and p = k + 1. Since |F | = |F|, we can apply the lemma

on F and obtain a subfamily F ′ that is a flower with k + 1 petals. Let Y be its core. Consider
the word u of length n over {a,b} which has a’s exactly at the positions in Y . Then:

• u is outside of Goodn. Indeed, |Y | <
√
n, since it is the intersection of distinct sets of size√

n. Hence one of the blocks of u will contain only b’s, putting it outside of Goodn.
• u is a k-limit. Let P be a set of k positions, we will find a word that is mapped to F ′ that

matches u on P . If a position in P points to an a in u, then every word in F ′ has an a at

88 CHAPTER 5. The Regular Languages of Σ2

that position (by construction, since this position would belong to the core Y). Therefore,
as we are looking for a matching word in F ′, we can find a word that is matching on
the b’s only. So we assume that P contains only positions on which u is b. Since |P | is k,
it cannot intersect F ′, hence there is a set S ∈ F ′ such that S ∩ P = ∅. The set S is thus
τ(w) for a word w ∈ F that has a b on all positions in P . This word w thus matches u on P ,
concluding the proof of the main statement.

The “in particular” part is implied by the fact that, for n large enough:

|Goodn|
nd

=
√
n
√
n

nd
≥ k
√
n.

□

This is all we need to conclude.

Theorem 5.12.
The language K = (ac∗b+ c)∗ is not in Σ2[arb].

Proof. Corollary 5.3 applied on Good, using Lemma 5.11, implies that Good < Σ2[arb]. Lemma 5.10
then asserts that K cannot be in Σ2[arb] either. □

5.3 Neutral Straubing property

This section is devoted to the proof of the neutral Straubing property for Σ2.
We can specialise the equations for the dot-depth (Theorem 2.29) in the case of Σ2.

Theorem 5.13.
A regular language is in Σ2[<] if and only if its ordered syntactic monoid M is such that for
any x,y ∈M with y a subword of x, it holds that

xω ≤ xωyxω.

The proof is along two main steps:

Section 5.3.1. We will start with a regular language with a neutral letter L < Σ2[<]. Since it is
not in Σ2[<], there are x,y ∈M that falsify the equations of Theorem 5.13. We use these witnesses
to build another language T that behaves the same with regard to Σ2[arb] and show that it lies
outside of Σ2[arb], implying that L < Σ2[arb].

To show T out of Σ2[arb], we identify (Section 5.3.1.1) a subset of well-behaved words of T ,
and make some simple syntactical changes (in Section 5.3.1.2) on them so that they look like
words in Good, in a similar fashion as the “expansions” of Lemma 5.10. The argument used in
Lemma 5.10 then needs to be refined, as we do not have that any word outside of Good comes
from a word outside of T . We will define a set Bad of words that look like words in Good except
for one block that contains only b’s; Lemma 5.10 is then worded as: if K is in Σ2[arb], then there
is a Σ2[arb] language that separates Good from Bad (Lemma 5.14).

5.3. Neutral Straubing property 89

Section 5.3.2. We show that no language of Σ2[arb] can separate Good from Bad. We thus
need to provide a statement in the spirit of Lemma 5.11. We first write good and bad words in a
succinct (“packed”) way, as words in [

√
n]
√
n, the i-th letter being some value v if the original

word had the a of its i-th block in position v (Section 5.3.2.1). We then translate the notion
of k-limit to packed words (Lemma 5.16). Finally, we use the fact that big sets of (packed)
good words are not tangled (Lemma 5.8) and that we can find a k-limit inside sets of this form
(Lemma 5.17).

5.3.1 If a language not in Σ2[<] is in Σ2[arb], we can separate Good from Bad
with a language in Σ2[arb]

5.3.1.1 Target language and some of its words

For the rest of this section, let L ⊆ A∗ be a regular language with a neutral letter that lies outside
of Σ2[<] and let M be its ordered syntactic monoid. Since L is not in Σ2[<], there are elements
x,y ∈M such that x ≰ xyx with x an idempotent and y a subword of x. Let T be the language
of M∗ of words that evaluate to the upset of x. Clearly, any word of M∗ that evaluates to xyx
does not belong to T . Because Σ2[arb]∩Neut is a variety of monoids, both of T and L or none of
them belongs to Σ2[arb].

By hypothesis, y is thus also a subword of x; this provides us with words that evaluate to x
and y of the shape:

x1y1 . . .xtyt evaluates to x, y1 . . . yt evaluates to y,

where each xi and yi are letters in M. (Note that we can use the identity element of M as needed
to fill up and ensure we have as many xi ’s as yi ’s.)

Let n ∈N be a perfect square (whose value is meant to be taken large enough later). We
define

√
n+ 1 words of length t

√
n+ t over M:

• For 1 ≤ i ≤
√
n,

x(i) =
(
1i−1x11

√
n−i · y1

)
· · ·

(
1i−1xt1

√
n−i · yt

)
.

Here 1 ∈M is the neutral element of M. Note that these words evaluate to x.
• Additionally, we consider the word 1

√
ny1 · · ·1

√
nyt , which evaluates to y, and we simply

write y for it. Note that y can be obtained by replacing all the letters xj by 1 from any word
x(i).

Call T -good a concatenation of
√
n words of the form x(i) sandwiched between two words x(1)

(the 1 is arbitrary), and T -bad a word obtained by changing, in a T -good word, exactly one of the
words x(i) to y (but for the x(1) at the beginning and end). By construction, any T -good word
evaluates to x in M, so belongs to T , while any T -bad word evaluates to xyx, hence does not
belong to T . Note that if we had switched two blocks of a T -good word to y, we would not be
able to say whether it belonged to T or not.

5.3.1.2 T -good, T -bad to Good and Bad

The T -good and T -bad words contain a lot of redundant information, for instance x(i) is of
length t

√
n+ t, while all the information it really contains is 1 ≤ i ≤

√
n. Recall the set Goodn of

Section 5.2 which contains all words of length n over {a,b} that can be divided into
√
n blocks

of length
√
n, each containing a single a. Again, we let Good be all such words, of any perfect

90 CHAPTER 5. The Regular Languages of Σ2

square length. Define similarly Badn as the set of words that are like Goodn except for one block
which has only b’s, and let Bad =

⋃
nBadn2 .

In the next lemma, we show that we can modify, using only wires in a circuit, words over
{a,b} so that if they are in Good they become T -good, and if they are in Bad they become T -
bad. This modification is simple enough that we can take a Σ2 circuit family for T , apply the
modification at the top of each circuit, and still have a circuit family in Σ2; the resulting circuit
family separates Good from Bad:

Lemma 5.14.
If T ∈ Σ2[arb], then there is a Σ2[arb] language that separates Good from Bad.

Proof. As in Lemma 5.10, this is easier seen on circuits: we design a circuit for inputs of length
n over {a,b} that separates Good from Bad.

Consider the first block of
√
n letters of the input. We replicate it t times, with the i-th

replication changing b’s to 1 and a’s to xi . We then concatenate these and add yi between the
i-th and (i + 1)-th replication. For instance, b7ab

√
n−8 would turn into:(

17x11
√
n−8 · y1

)
· · ·

(
17xt1

√
n−8 · yt

)
= x(8).

In particular, if the block were all b’s, we would obtain the word y, which has no letter xj .
We can do this to each block of

√
n letters, concatenate the resulting words, then add the

word x(1) at the beginning and the end. Note that these operations can be done with only wires,
with no gates involved.

If the input word is in Good, then the word produced is T -good, hence in T . If it was in
Bad, then the resulting word would be T -bad, hence would lie outside of T . This shows that
the desired circuit can be constructed using the above wiring followed by the circuit for T for
inputs of length (t

√
n+ t)(2 +

√
n). Since t is a constant and depends solely on L, the resulting

circuit is of polynomial size and of the correct shape. □

5.3.2 No language in Σ2[arb] separates Good from Bad

Note that this section is independent from the previous one. We will now rely on Corollary 5.3
to show that any Σ2[arb] language L that accepts all of Good must accept a word in Bad. To
apply Corollary 5.3, from this point onward we let k,d ∈N, and set n to be a large enough value
that depends only on k and d. The role of L′ in the statement of Corollary 5.3 will be played by
Goodn and we will build k-limits belonging to Badn, which we call bad k-limits. The reader may
check that the statements of the forthcoming Lemma 5.17 and the already proved Lemma 5.8
conclude the proof.

5.3.2.1 Packed words

Words in Goodn and Badn can be described by the position of the letter a in each block of size√
n. We make this explicit, by seeing [

√
n,⊥] = [

√
n]∪{⊥} as an alphabet, and working with words

in [
√
n,⊥]

√
n. We call these words packed and will use Greek letters λ,µ,ν for them; we also call

the letter at some position in packed words its contents at this position, only to stress that we are
working with packed words. We define the natural functions to pack and unpack words:

• unpack: [
√
n,⊥]→ {a,b}

√
n maps i to bi−1ab

√
n−i and ⊥ to b

√
n. This extends naturally to

words over [
√
n,⊥].

5.3. Neutral Straubing property 91

• pack: {a,b}∗→ [
√
n,⊥]∗ is the inverse of unpack. We will use that function on sets of words

too, with the natural meaning.

Example 5.15.
With n = 9, pack(abbbbbbab) = 1⊥2, and unpack(31⊥) = bbaabbbbb.

We can now rephrase the notion of k-limit using packed words:

Lemma 5.16.
Let F ⊆Goodn and define Φ = pack(F). If µ is a packed word that has the following properties,
then unpack(µ) is a bad k-limit for F:

(1) There is a word ν ∈ Φ that differs on a single position i with µ, at which µ has contents
⊥:

µi =⊥∧ (∀j , i)[νj = µj].

(2) For every set C ⊆ [
√
n] of contents that contains νi and every set P ⊆ [

√
n]\{i} of positions

such that |C|+ |P | = k, there is a word λ ∈ Φ whose contents at position i is not in C and
that matches ν on P :

λi < C ∧ (∀p ∈ P)[λp = νp].

Proof. Write u for unpack(µ). That u ∈ Bad is immediate from Property 1: u is but a word v of
Good in which one block was set to all b’s.

We now show that u is a k-limit. Let T be a set of k positions, we split T into two sets:

• T ′ is the set of positions p that do not belong to the i-th block of u, that is, they do not
satisfy ⌈p/

√
n⌉ = i. We let P be each of the elements of T ′ divided by

√
n, that is, for any

p ∈ T ′ we add ⌈p/
√
n⌉ to P .

• T ′′ is the set of positions that do fall in the i-th block. Note that u only has b’s at the
positions of T ′′ . We let C be that set, modulo

√
n, that is, for any p ∈ T ′′ , we add pmod

√
n

to C or
√
n if this value is 0.

First, if µi < C, then T indicates positions of u that have the same letters as in unpack(ν) ∈ F,
so a word of F matches u over T , as required. We thus assume next that µi ∈ C.

Let λ ∈ Φ be the word given by Property 2 for C and P , we claim that w = unpack(λ)
matches u on the positions of T , concluding the proof.

First note that the i-th block of w has its a in a position that is not in T ′′ , hence w matches
u on T ′′. Consider next any position p ∈ T ′ and write j for the block in which p falls (i.e.,
j = ⌈p/

√
n⌉). Since µj = λj by hypothesis, the j-th block of u and w are the same, hence

up = wp. □

5.3.2.2 Tangled sets of good words are small, nontangled ones have a bad k-limit

Consider an F ⊆ Goodn. To find a bad k-limit for F, we need a lot of diversity in F; see in
particular Prop. 2 of Lemma 5.16. Hence having some given contents at a given position in a
word of Φ should not force too many other positions to have a specific value. The needed notion
if the one of tangledness defined earlier. We have already seen that large sets cannot be tangled.
We need to prove that sets that are not-tangled possess a k-limit.

92 CHAPTER 5. The Regular Languages of Σ2

Lemma 5.17.
Let F ⊆Goodn and Φ = pack(F). If Φ is not k-tangled, then F has a bad k-limit.

Proof. That Φ is not tangled means that there is a word ν ∈ Φ and a position i such that for any
set of pairs position/contents S of size k and any i-set D of size at most k that contains (i,νi), S
does not entail D. We define µ to be the word ν but with µi set to ⊥. We show that unpack(µ) is
a bad k-limit using Lemma 5.16. Property 1 therein is true by construction, so we need only
show Property 2.

Let C ⊆ [
√
n] with µi ∈ C and P ⊆ [

√
n] \ {i} with |C|+ |P | = k. We add some more arbitrary

positions in P so that |P | = k, avoiding i. Define:

S = {(p,µp) | p ∈ P }, D = {(i, c) | c ∈ C}.

By hypothesis, since (i,µi) ∈ D, S does not entail D. This means that there is a word λ ∈ Φ
such that S and λ agree, but λi < C. This is the word needed for Property 2 of Lemma 5.16,
concluding the proof. □

Corollary 5.18.
No Σ2[arb] language can separate Good from Bad.

Proof. We apply Corollary 5.3 on any language L that separates Good from Bad. We let k,d ∈N,
and n large enough; L′ in the statement of Corollary 5.3 is set to Goodn. We are then given
a set F of size at least |Goodn|/nd and Lemma 5.8 shows that F is not tangled (the size of the
alphabet of packed words being

√
n and k being a constant, the assumption on the relative sizes

of the alphabet and k will be satisfied with n big enough). Lemma 5.17 then implies that F
has a bad k-limit, which is therefore not in L. Corollary 5.3 concludes that F is not in Σ2[arb],
showing the statement. □

We can now state the desired theorem.

Theorem 5.19 (Neutral Straubing Property for Σ2).

Σ2[arb]∩Reg∩Neut ⊆ Σ2[<].

Proof. Let L < Σ2[<] regular with a neutral letter and T be the language defined in Sec-
tion 5.3.1.1. Corollary 5.18 and Lemma 5.14 imply that T cannot be in Σ2[arb], and therefore
L cannot be in Σ2[arb]. □

This implies right away that the neutral Straubing property holds for Π2 as well.

5.4 Full Straubing property

To lift the neutral letter assumption and prove the Straubing property for Σ2 in its full generality,
we need to introduce notions from finite category theory. Indeed, we need to describe Σ2[reg].

5.4. Full Straubing property 93

Generic tools to handle that kind of problem have been described in Section 2.4. If Σ2[<] were
associated to a local variety of monoids V, we would know that Σ2[reg] is associated to QLV
(Fact 2.24 and Fact 2.25). However this variety of monoids is known for not being local by a
result of Almeida and Escada [3, Theorem 4.17]. The use of finite category was first proposed by
Tilson in [131].

5.4.1 Category theory

We present a theory of category to study varieties of monoids. There are categorical generalisa-
tions of varieties of monoids and C-varieties of stamps. We have seen in Section 2.4 that varieties
of semigroups and ne-varieties of stamps define the same languages. Here, for ne-varieties
of stamps, we choose to use the concept of semigroups instead and introduce its categorical
counterpart: semigroupoids. This is for a simplifying the presentation because we will not need
an equivalent to lm-varieties of stamps. See for instance [131] for the basic definitions, and [98]
for their ordered coutnerparts.

Semigroupoids and categories. A semigroupoid is a directed labeled (multi-)graph. However,
in this setting, we use a terminology different than for graphs: a vertex is called an object and
an edge is called an arrow. For C a semigroupoid, we denote by Obj(C) its set of objects. For
x,y two object, we denote by C(x,y) the set of arrows from x to y. Two arrows in the same
C(x,y) are said to be coterminal. If z is yet another object, two arrows from C(x,y) and C(y,z) are
said to be consecutive. An operation on C is a function defined on pairs of consecutive arrows
e ∈ C(x,y) and f ∈ C(y,z) that returns an arrow from C(x,z). As usual, we denote the operation
multiplicatively. An identity for an object x is an arrow 1x ∈ C(x,x) such that 1xe = e for every
e ∈ C(x,y) and e1x = e for every e ∈ C(y,x).

Definition 5.20.
A semigroupoid is a ordered labeled graph with an associative operation. If moreover there is
an identity for each object, we call it a category.

It can be seen as a generalisation of semigroups and monoids, with a partial operation.
Indeed, a semigroup (resp. a monoid) can be seen as a semigroupoid (resp. a category) with a
single object. The elements of the semigroup can be viewed as arrows of the semigroupoid with
one object.

An order on a semigroupoid (resp. category) C is an order ≤ on coterminal arrows that is
compatible is the sense that:

• if e ≤ f then e and f are coterminal,
• if e ≤ f are two coterminal arrows and e and g are consecutive then eg ≤ f g,
• if e ≤ f are two coterminal arrows and g and e are consecutive then ge ≤ gf .

A semigroupoid endowed with an order is an ordered semigroupoid. A category endowed with
an order is an ordered category.

Varieties of semigroupoids and categories. A morphism between two semigroupoids C and D
if a function f from the objects of C to the objects of D, along with, for every couple of objects
x,y of C, a distinct function g : C(x,y)→ C(f (x), f (y)) such that for every consecutive arrows e, f :

g(xy) = g(x)g(y).

94 CHAPTER 5. The Regular Languages of Σ2

A morphism between two categories is a morphism of semigroupoids with the additional
condition that the identity of an object is mapped to an identity. It is a morphism of ordered
semigroupoids or categories if moreover it is monotone: for every arrows such that e ≤ f , then
g(e) ≤ g(f).

We describe some operations on semigroupoids. They can be extended to categories, ordered
semigroupoids and ordered categories by adding a requirement on preservation of identities or
of the order. Let C and D be two semigroupoids.

We say that C is a quotient of D if there exists a morphism (f ,g) from C to D such that f is
a bijection on the set of objects and g is surjective. We say that C is a subsemigroupoid of D if
there exists a morphism (f ,g) from C to D such that g is injective for each C(x,y). We say that C
divides D if there exists a third semigroupoid E that is a subsemigroupoid of D and such that C
is a quotient of E.

The product of C and D is the semigroupoid C ×D with:

• Obj(C ×D) = Obj(C)×Obj(D),
• for (x,y), (x′ , y′) ∈Obj(C ×D), the arrows are (C ×D)((x,y), (x′ , y′)) = C(x,x′)×D(y,y′).

The coproduct of C and D is the semigroupoid C ∨D with:

• Obj(C ∨D) = Obj(C)Obj(D),
• for (x,y) ∈Obj(C), the arrows are (C ∨D)(x,y) = C(x,y),
• for (x,y) ∈Obj(D), the arrows are (C ∨D)(x,y) =D(x,y),
• for x ∈Obj(C) and y ∈Obj(D), the arrows are (C ∨D)(x,y) = (C ∨D)(y,x) = ∅.

Definition 5.21.
A variety of semigroupoids (resp. categories, ordered semigroupoids, ordered categories) is a
set of semigroupoids that is closed under division, product, and coproduct.

For the case of categories and ordered categories, coproduct can be obtained as a divisor of a
product. Therefore, it is not necessary to ask for the closure under coproduct. From this point,
all the results will be stated with semigroupoids and semigroups but will also hold for categories
and monoids.

A very important class of varieties of ordered semigroupoids is the set of globals of varieties
of ordered semigroups. Let V be an ordered variety of semigroups, gV is the smallest variety
of semigroupoids that contains all the semigroups in V (seen as one element semigroupoids).
Equivalently, it is the set of ordered semigroupoids that divides a semigroup in V. In some cases,
it is be possible to deduce the decidability of membership in gV thanks to the decidability of the
membership of V. To do that we need to introduce the consolidated ordered semigroup Cons(C)
of an ordered semigroupoid C. It is the ordered semigroup that simulates the operation in C,
with a zero for the case of an operation applied on two non-consecutive arrows. Formally,

Cons(C) = {(x,e,y) | x,y ∈Obj(C), e ∈ C(x,y)} ∪ {0}

with the operation

(x,e,y) · (x′ , e′ , y′) =
{

(x,ee′ , y′) if y = x′

0 otherwise

and order given by 0 being minimal and

(x,e,y) ≤ (x′ , e′ , y′) if and only if x = x′ , e ≤ e′ , y = y′ .

5.4. Full Straubing property 95

Whenever a variety of ordered semigroups is expressive enough, then we can check member-
ship in gV with a condition related to V.

Lemma 5.22 (Pin, Pinguet, Weil [98, Proposition 1.2]).
Let V be a variety of ordered semigroups (resp. monoids) that can recognise the regular
language (ab)∗. For a semigroupoid (resp. category) C

C ∈ gV⇔ Cons(C) ∈V.

Wreath product by D. We define now a category that will help in the understanding of the
wreath product ∗D.

Definition 5.23.
Let S be an ordered semigroup. Its idempotent ordered category is the category ICat(S) defined
with

• the objects of ICat(S) are the idempotents of S,
• for x,y two objects, ICat(S)(x,y) = xSy.

The operations between arrows are done with the operation of S, ie for e, f ,g two idempotents,
and x ∈ eSf and y ∈ f Sg two arrows: the operation on x and y is defined as xy, adn is indeed
in eSg. The order of the category is derived from the order of S.

The following theorem is known as Straubing delay theorem.

Theorem 5.24 (Straubing [127, Theorem 17.1], Pin,Pinguet,Weil [98, Theorem 3.1]).
Let V be a variety of ordered monoids. For any ordered semigroup S,

S ∈V ∗D⇔ ICat(S) ∈ gV.

The idea is to enrich the alphabet with the information of the following letters, like with a
slifind window. Then a bound on the number of letters needed to be considered is needed. The
core of the delay theorem is that it is enough to consider the idempotent to catch all the power
of the wreath product by D.

Wreath product by MOD. Recall that the lm-variety MODq is the lm-variety of stamps gener-
ated by the q-modular stamps, that counts the length of a word modulo an integer q. Firstly, we
will introduce a categorical way of accounting for the addition of the wreath product by MODq
for a fixed integer q. Secondly, we will see that doing a wreath product with the whole class
MOD can be done only with a single MODq for a well chosen q, once a semigroup is fixed. This
kind of theorems are also known as delay theorems.

Definition 5.25.
Let µ : A∗→M be an ordered stamp, and q an integer. The q-modulo ordered semigroupoid of µ
is the ordered semigroupoid MCatq(µ) defined with

96 CHAPTER 5. The Regular Languages of Σ2

• the objects of MCatq(µ) are integers from Z/qZ,
• for r, r ′ two objects, MCat((µ,q)r, r ′) = µ((Aq)∗Ar

′−r).

The operations between arrows are done with the operation of M. The order of the category is
derived from the order of µ.

The following is a delay theorem tailored for MOD.

Theorem 5.26 (Chaubard, Pin, Straubing [26]).
Let V be an ordered variety of semigroups and q be an integer. For any ordered stamp µ,

µ ∈V ∗MODq⇔MCatq(µ) ∈ gV.

For some cases, the stability index is the only modulo integer we need. It is in particular the
case for varieties of the form V ∗D.

Theorem 5.27 (Dartois, Paperman [30]).
Let V be an ordered variety of monoids. Let µ be an ordered stamp of stability index s. Then
we have that

µ ∈V ∗D ∗MOD⇔ µ ∈V ∗D ∗MODs.

Proof. The theorem follows from [30], but it is not explicitly stated in that form. They introduce
a property on varieties called infinite testability. Thanks to [30, Theorem 11], extended with
[30, Remark 12], gives that for every variety W of semigroups that are infinitely testable,

µ ∈W ∗MOD⇔ µ ∈W ∗MODs.

Then Remark 10 enounces that every variety of the form V ∗D is infinitely testable, giving the
desired result. All their proofs can be extended to the ordered setting. □

Simplification for some varieties. We call a positive variety of monoids “stable under the
insertion of a minimal zero” if for every ordered monoid in the variety the following also belongs
to the variety: the monoid obtained by adjoining an element that behaves as a zero and that is
minimal for the order. We know that Π2[<] has this property, thanks to its equations xω ≥ xωyxω
for y a subword of x. Indeed, adding a minimal zero to a monoid already satisfying the equations
also satisfies the equations: either

• xω = 0 and the equation trivially stands since xωyxω = 0,
• xω , 0 and xωyxω = 0 and the equation stands by minimality of 0,
• xω , 0 and xωyxω , 0 and the equation stands because the base monoid satisfies the

equations.

We will show that for varieties V of this kind and an ordered semigroupoid C, membership
to gV of ICat(Cons(C)) and ICat(C) are the same.

5.4. Full Straubing property 97

Remark 5.28.
In Tilson’s seminal paper on categories as algebras [131], Proposition 16.1 gives a stronger
result (for categories) than what we will state, without restriction on the variety, and that
can be extended to semigroupoids. However, we believe this result not to hold in its full
generality (without breaking anything else in the paper), and we choose to use a weaker but
correct statement that is enough for the case of Σ2 and Π2.

We first need to extend the operation ICat from semigroups to semigroupoids.

Definition 5.29.
Let C be an ordered semigroupoid. Its idempotent ordered category is the category ICat(C)
defined with

• the objects of ICat(C) are pairs (x,e) where x is an object of C and e ∈ C(x,x) is an arrow
such that e2 = e,

• for (x,e), (y,f) two objects, ICat(C)((x,e), (y,f)) is the set of arrows of C from x to y that
can decomposed as egf for g ∈ C(x,y).

We can state a lemma that allows to simplify checking of memberships when both consolida-
tions and idempotent categories are present.

Lemma 5.30.
Let V be a variety of ordered monoids that is stable under the insertion of a minimal zero. For
any ordered semigroupoid C:

ICat(Cons(C)) ∈ gV⇔ ICat(C) ∈ gV.

Proof. Inlining the definition of the idempotent and the consolidated category, we see that
ICat(Cons(C)) is the same category as ICat(C) with an extra object 0, and an arrow labelled with
0 between every two objects. Hence ICat(C) is a subcategory of ICat(Cons(C)), and therefore
by the transitivity of the divisibility relation:

ICat(Cons(C)) ∈ gV⇒ ICat(C) ∈ gV.

For the other implication, assume that ICat(C) divides a monoid M of V. Let D be the
subcategory of M that has a quotient into ICat(C). Let D0 be the operation on D that consists
in adding an object 0 and a minimal arrow 0 between any two objects. Let M0 be M with an
extra minimal zero. We know that M0 ∈V. We can extend the quotient to a quotient from D0

to ICat(Cons(C)). We can also see that D0 is a subcategory of M0. These two morphisms are
defined by mapping every zero on the zero of M0. Hence ICat(Cons(C)) divides M0, a monoid
in V, and is therefore in gV. □

5.4.2 Adaptation of the proof

All the category theory we need being established, we can show how to adapt the proof of the
neutral Straubing property of Σ2 to the Straubing property. In the first place, we will precisely

98 CHAPTER 5. The Regular Languages of Σ2

describe Σ2[reg]. We redo Section 5.3.1 to show that if a language not in Σ2[reg] is in Σ2[arb],
we can separate Good from Bad with a language in Σ2[arb].

The lm-variety of stamps Σ2[reg]. We will reduce the membership in Σ2[reg] of a stamp to the
membership in Σ2[<] of some well chosen monoid. Let µ : A∗→M be an ordered stamp with
a stability index s. We recall that Ms is the stabilised semigroup of µ. We define the enriched
monoid to be

M−reg (µ) = {0} ∪

(r, e,x,e′ , r ′)

∣∣∣∣∣∣∣∣∣∣
0 ≤ r, r ′ < s
e,e′ ∈Ms idempotents
x ∈ eMe′
x ∈ µ((As)∗Ar

′−r)


The operation is given by

(r1, e1,x1, e
′
1, r
′
1) · (r2, e2,x2, e

′
2, r
′
2) =

{
(r1, e1,x1x2, e

′
2, r
′
2) if e′1 = e2 and r ′1 = r2

0 otherwise .

It is easy to check that x1,x2 comply with the conditions of the definition. The order is given
by 0 being minimal and

(r1, e1,x1, e
′
1, r
′
1) ≤ (r2, e2,x2, e

′
2, r
′
2) if and only if r1 = r2, e1 = e2, e

′
1 = e′2, r

′
1 = r ′2 and x1 ≤ x2

We define a slightly different enriched monoid M+
reg to be the same with 0 being a maximal

element. We state the following theorem for Π2, but it would work for any logic expressive
enough to define (ab)∗. The statement would be slightly less pleasant for varieties that are not
stable under insertion of a minimal zero.

Theorem 5.31.
Let V be the variety of ordered monoids associated to Π2[<] and W be the lm-variety of
ordered stamps associated to Π2[reg]. Let µ be an ordered stamp. Then

µ ∈W⇔M−reg (µ) ∈V.

Proof. The salient feature ofM−reg (µ) needed is that is it precisely equals to Cons(ICat(MCats(µ))),
for s the stability index of µ.This is seen by inlining the definitions of both ICat and MCat.

We first express W with wreath products. By Theorem 2.22, that we can use thanks to
Fact 2.21, we have that the variety of semigroups associated with Π2[<, loc] is V ∗D. Then using
Theorem 2.23,

W = V ∗D ∗MOD.

We can use all the machinery developed in the section to obtain a chain of equivalences. The
stability index of µ is written s.

The delay theorem for ∗MOD (Theorem 5.27) and the derived category theorem for ∗MOD
(Theorem 5.26) give

µ ∈V ∗D ∗MOD⇔MCats(µ) ∈ g(V ∗D).

We can apply Lemma 5.22, because Π2[<] (and therefore Π2[<, loc]) can express (ab)∗

(Fact 5.9):
MCats(µ) ∈ g(V ∗D)⇔ Cons(MCats(µ)) ∈V ∗D.

5.4. Full Straubing property 99

Straubing’s delay theorem (Theorem 5.24) can now be applied:

Cons(MCats(µ)) ∈V ∗D⇔ ICat(Cons(MCats(µ))) ∈ gV.

With the fact that we can add a minimal zero to monoids in Π2[<], Lemma 5.30 gives:

ICat(Cons(MCats(µ))) ∈ gV⇔ ICat(MCats(µ)) ∈ gV.

Once again, and for the same reason as before, we can use Lemma 5.22:

ICat(MCats(µ)) ∈ gV⇔ Cons(ICat(MCats(µ))) ∈V.

This concludes the proof.
□

By duality, we deduce an analogous theorem for Σ2 (or for any logic expressive enough to
define the complement of (ab)∗).

Corollary 5.32.
Let V be the variety of ordered monoids associated to Σ2[<] and W be the lm-variety of
ordered stamps associated to Σ2[reg]. Let µ be an ordered stamp. Then

µ ∈W⇔M+
reg (µ) ∈V.

Proof. Let µ : A∗→M be an ordered stamp. Let µ̃ : A∗→ M̃ be the same stamp as µ but with
the dual order on M. We know that the dual Ṽ is the variety recognising Π2[<] and that W̃ is
the variety recognising Π2[reg]. Therefore we can apply Theorem 5.31. The proof follows from
the sequence of equivalences

µ ∈W⇔ µ̃ ∈ W̃

⇔M−reg (µ̃) ∈ Ṽ

⇔ �M+
reg (µ) ∈ Ṽ

⇔M+
reg(µ) ∈V.

□

Separating again Good from Bad. For the rest of this section, let L ⊆ A∗ be a regular language
with a neutral letter that lies outside of Σ2[reg] and let µ : A∗→M be its ordered syntactic stamp.
Since L is not in Σ2[reg], Corollary 5.32 gives us that M+

reg (µ) is not in Σ2[<]. Therefore, there
are elements a = (r, e,x,e, r) and b = (q,f ,y, f ′ ,q′) in M+

reg (µ) such that a is an idempotent and b a
subword of a, and a ≰ aba. Indeed, thanks to the maximality of the zero, the equations cannot be
falsified with either the right or left term being zero.

Let T be the language of words in M∗ whose evaluation belong to the upset of x. Clearly, any
word in M∗ that evaluates to xyx does not belong to T . Indeed, the order on M+

reg (µ) is inherited
from M. Because Σ2[reg] is a positive lm-variety of languages, either both T and L belong to
Σ2[reg], or none does.

100 CHAPTER 5. The Regular Languages of Σ2

By hypothesis, b is thus also a subword of a; this provides us with words that evaluate to a
and b of the shape:

a1b1 · · ·atbtat+1 evaluates to a, b1 · · ·bt evaluates to b,

where each ai and bi are letters in M+
reg (µ). Note that we cannot use anymore an identity element

to fill up the space, however we can use idempotents to ensure to have words of these forms. If
we had consecutives letters in a without a letter in b in between, we can merge them into a single
letter without changing the evaluations. The case with consecutive letters in b is similar. The
only remaining cases are when the last letter of a is a letter of b (and the symmetric case). In
this case, let (qt , ft , yt , f ′t ,q

′
t) be the last letter of b. We set at+1 to be q′t , f

′
t , f
′
t , f
′
t ,q
′
t . Adding this

element does not change the evaluation of a. For instance, if we had a = a1b1a2a3b2 and b = b1b2
with b2 = (q,f ,y, f ′ ,q′), we end up with:

a = a1b1(a2 · a3)b2(q′ , f ′ , f ′ , f ′ ,q′).

Because a, b and aba are not 0, and a is idempotent, we can write for 1 ≤ i ≤ t:

bi = (qi , fi , yi , f
′
i ,q
′
i) with q′i = qi+1, f

′
i = fi+1

ai = (ri , ei ,xi , ei , ri)

at+1 = (r1, e1,xt+1, e1, r1) with e1 = f1,q1 = r1

Let n ∈N be a perfect square. We define
√
n+ 1 words of length (t + 1)

√
n+ t over M:

• For 1 ≤ i ≤
√
n,

x(i) =
(
ei−1

1 x1e
√
n−i

1 · y1

)
· · ·

(
ei−1
t xte

√
n−i

t · yt
)(
ei−1
t xte

√
n−i

t

)
.

Note that these words evaluate to x, because every xj is in ejMej .

• Additionally, we consider the word e
√
n

1 y1 · · ·e
√
n

t yte
√
n

t+1, which evaluates to y, and we simply
write y for it. Note that y can be obtained by replacing all the letters xj by ej from any
word x(i).

We define T -good and T -bad words as in Section 5.3.1. This allows to prove an analogue to
Lemma 5.14, in the case of Σ2[reg].

Lemma 5.33.
If T ∈ Σ2[arb], then there is a Σ2[arb] language that separates Good from Bad.

Proof. We design a circuit for inputs of length n over {a,b} that separates Good from Bad.
Consider the first block of

√
n letters of the input. We replicate it t + 1 times, with the i-th

replication changing b’s to ei and a’s to xi . This can be done because both xi and ei are in the
stabilisation monoid of M and therefore can be represented with words of the same size s. We
then concatenate these and add yi between the i-th and (i + 1)-th replication. In particular, if
the block were all b’s, we would obtain the word y, which has no letter xj .

We can do this to each block of
√
n letters, concatenate the resulting words, then add the

word x(1) at the beginning and the end. Note that these operations can be done with only wires,

5.5. Going further 101

with no gates involved.
If the input word is in Good, then the word produced is T -good, hence in T . If it was in

Bad, then the resulting word would be T -bad, hence would lie outside of T . This shows that
the desired circuit can be constructed using the above wiring followed by the circuit for T for
inputs of length s((t + 1)

√
n+ t)(2 +

√
n). Since t and s are constants and depend solely on L, the

resulting circuit is of polynomial size and of the correct shape. □

Reusing Corollary 5.18, we can conclude.

Theorem 5.34 (Straubing Property for Σ2).

Σ2[arb]∩Reg = Σ2[reg].

5.5 Going further

The proof we have developed in this chapter has several components:

i) understanding algebraically Σ2[<],
ii) construct a lower bound against the equivalent circuit model Σ2,

iii) study the addition of regular predicates into the logic.

We would like to prove Straubing properties for Σi and Πi for i > 2. For that, we would need
all three previous points extended to higher levels of the alternation hierarchy.

i) Decidability if the membership problem for the logics Σi[<] for i ≥ 5 is not even known.
Indeed, it is one of the major open problems in automata theory: the decidability of the
dot-depth hierarchy. For the levels Σ3[<] and Σ4[<], their membership is decidable thanks
to elaborated results of Place and Zeitoun [103] (the algorithm is in fact rather simple, its
correctness is not). Even with the decidability in hand, it is not clear how to use it: a better
comprehension of the equations needed to define these logics might be useful.

ii) Then one would need to develop lower bounds tailored for the circuit class Σi for i ≥ 3.
Indeed, the techniques against Σi have to not work against Σi+1. Top-down approaches,
with the usage of finite limits, in the spirit of [58] are the more promising. In fact, they have
been recently extended by Göös, Riazanov, Sofronova and Sokolov [46] to work against
depth-4 circuits (hence against Σ3[arb]), especially for the PARITY language. It is still
unclear how to use these techniques to work against other languages that we know are not
in Σ3[<], for instance (a(ab)∗b)∗. It is possible to design an attack with limits for every level
Σi , but the combinatorial problem to find limits become harder to solve as i grows: the
property that has to be proved has more and more quantifiers atlernation.

iii) There is probably no particular problem with this item for any level of the alternation
hierarchy. Indeed, every logic Σi[<] can express (ab)∗ and therefore Lemma 5.22 can be
applied. Also, the algebraic counterpart of each one of these logics are stable under the
insertion of a maximal zero and hence we can benefit from the simplification given by
Lemma 5.30. So in summary, a stamp belongs to Σi[reg] if and only if its enriched monoid
belongs to Σi[<]. We thus have a good understanding of the addition of regular predicates
into a logic Σi[<]. Lifting a neutral Straubing property to a full Straubing property will
obviously depend on the precise structure of the proof, but there is a good chance that it
can be achieved without too much trouble.

102 CHAPTER 5. The Regular Languages of Σ2

Bibliography of the current chapter

[3] Jorge Almeida and Ana P. Escada. “The globals of pseudovarieties of ordered semigroups
containing B2 and an application to a problem proposed by Pin”. eng. In: RAIRO -
Theoretical Informatics and Applications 39.1 (2010). doi: 10.1051/ita:2005001.

[6] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. “Improved bounds for the
sunflower lemma”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing. 2020. doi: 10.4007/annals.2021.194.3.5.

[10] Corentin Barloy, Michael Cadilhac, Charles Paperman, and Thomas Zeume. “The Regular
Languages of First-Order Logic with One Alternation”. In: Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’22. Association for Computing
Machinery, Aug. 2022. doi: 10.1145/3531130.3533371.

[26] Laura Chaubard, Jean-Éric Pin, and Howard Straubing. “Actions, wreath products of
C-varieties and concatenation product”. In: Theoretical Computer Science. In honour of
Professor Christian Choffrut on the occasion of his 60th birthday 356.1 (May 2006). doi:
10.1016/j.tcs.2006.01.039.

[30] Luc Dartois and Charles Paperman. “Alternation Hierarchies of First Order Logic with
Regular Predicates”. en. In: Fundamentals of Computation Theory. Ed. by Adrian Kosowski
and Igor Walukiewicz. Cham: Springer International Publishing, 2015. doi: 10.1007/978-
3-319-22177-9_13.

[38] R. Erdos P.and Raso. “Intersection theorems for systems of finite sets”. In: journal of the
London Mathematical Society 35.1 (1960).

[46] Mika Göös, Artur Riazanov, Anastasia Sofronova, and Dmitry Sokolov. “Top-Down Lower
Bounds for Depth-Four Circuits”. In: 2023 IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS). 2023. doi: 10.1109/FOCS57990.2023.00063.

[58] J. Håstad, S. Jukna, and P. Pudlàk. “Top-down lower bounds for depth-three circuits”. en.
In: Computational Complexity 5.2 (June 1995). doi: 10.1007/BF01268140.

[65] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Berlin Hei-
delberg, 2012. doi: 10.1007/978-3-642-24508-4.

[66] Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. 1st. Springer
Publishing Company, Incorporated, 2010.

[80] Or Meir and Avi Wigderson. “Prediction from Partial Information and Hindsight, with
Application to Circuit Lower Bounds”. en. In: computational complexity 28.2 (June 2019).
doi: 10.1007/s00037-019-00177-4.

[98] Jean-Eric Pin, Arnaud Pinguet, and Pascal Weil. “Ordered categories and ordered semi-
groups”. en. In: Communications in Algebra 30.12 (Dec. 2002). doi: 10 . 1081 / AGB -
120016004.

[103] Thomas Place and Marc Zeitoun. “Going Higher in First-Order Quantifier Alternation
Hierarchies on Words”. In: Journal of the ACM 66.2 (Mar. 2019). doi: 10.1145/3303991.

[107] Anup Rao. Coding for Sunflowers. Feb. 2020. doi: 10.48550/arXiv.1909.04774.

[120] Michael Sipser. “A topological view of some problems in complexity theory”. en. In:
Mathematical Foundations of Computer Science 1984. Ed. by M. P. Chytil and V. Koubek.
Vol. 176. Berlin/Heidelberg: Springer-Verlag, 1984. doi: 10.1007/BFb0030341.

[127] Howard Straubing. “Finite semigroup varieties of the form V ∗ D”. en. In: Journal of Pure
and Applied Algebra 36 (Jan. 1985). doi: 10.1016/0022-4049(85)90062-3.

https://doi.org/10.1051/ita:2005001
https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.1145/3531130.3533371
https://doi.org/10.1016/j.tcs.2006.01.039
https://doi.org/10.1007/978-3-319-22177-9_13
https://doi.org/10.1007/978-3-319-22177-9_13
https://doi.org/10.1109/FOCS57990.2023.00063
https://doi.org/10.1007/BF01268140
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/s00037-019-00177-4
https://doi.org/10.1081/AGB-120016004
https://doi.org/10.1081/AGB-120016004
https://doi.org/10.1145/3303991
https://doi.org/10.48550/arXiv.1909.04774
https://doi.org/10.1007/BFb0030341
https://doi.org/10.1016/0022-4049(85)90062-3

Bibliography of the current chapter 103

[131] Bret Tilson. “Categories as algebra: An essential ingredient in the theory of monoids”. en.
In: Journal of Pure and Applied Algebra 48.1 (Sept. 1987). doi: 10.1016/0022-4049(87)
90108-3.

https://doi.org/10.1016/0022-4049(87)90108-3
https://doi.org/10.1016/0022-4049(87)90108-3

104 CHAPTER 5. The Regular Languages of Σ2

Chapter6
Streaming Complexity: Processing
Regular Properties of XML Documents

Outline of the current chapter

6.1 Weak validation 107
6.2 Registerless languages 110

6.2.1 Almost-reversibility . 110
6.2.2 Flatness . 114

6.3 Stackless model 118
6.3.1 Depth-register automata . 118
6.3.2 Hierarchical almost-reversibility 123

6.4 Term encoding 130
6.5 Algebraic characterisations 133

6.5.1 Checking first and last letter . 134
6.5.2 Equivalences . 137

6.6 Going further 140

This chapter is based on the paper “Stackless Processing of Streamed
Trees”, which is joint work with Filip Murlak and Charles Paperman
[11]. The results of Section 6.5 is new.

Context. While graph is the new black, tree-structured data has not vanished. It is used both
as a serialisation format (Wikipedia, Wikidata, DBLP) and as an exchange format (WSDL and
SOAP rely on XML, the more recent GraphQL prefers JSON). Querying and validation of tree-
structured data continue to be both vital and challenging tasks in data management. Particularly
so, when documents grow too large to fit in memory, and it is time to switch to streaming; that
is, to read the document sequentially, maintaining a concise internal representation sufficient
for the realised task.

According to Palkar, Abuzaid, Bailis, and Zaharia [85], exploratory big-data applications
running over data in a semi-structured format, like JSON, can spend 80-90% of their execution

105

106 CHAPTER 6. Processing Regular Properties of XML Documents

time simply parsing the data. Performance improvements often rely on clever ways to reduce
the cost of parsing. In systems research, two main strategies have been proposed. The first one
relies on SAX (Simple API for XML) parsers: it outsources parsing to the API and deals only
with the resulting events [54, 128]. This allows to factor out the cost of parsing, and may lead
to significant performance gains when multiple queries are executed over the same document
[128]. The second approach is to perform parsing and query execution simultaneously, applying
push-down automata as the computation model [84], in the hope that the acquired semantic
information would help reduce the cost of parsing. When a single query is executed over a huge
document, this may also be highly beneficial [31].

The theoretical take on alleviating the cost of parsing is more radical: since it is so costly,
let us assume that it has been already done for us and the input stream is guaranteed to be a
well-formed document. This may be the case, for instance, if we trust the source of the document
or if we have already processed the document for other purposes. Can this assumption help
process the document more efficiently? This setting was introduced as weak validation in the
seminal work of Segoufin and Vianu [116] on validating a streamed XML document against a
DTD by means of a finite automaton. Despite the significant progress made in the initial paper
and in the follow-up work [9, 27, 115], the general problem of deciding whether weak validation
against a given regular tree language is feasible, remains open. Incidentally, this question is a
special—but disturbingly generic—case of an undecidable separation problem [70].

Vectorisation. A recent trend in data processing is to use hardware acceleration to exploit
local parallelism. Most modern CPU architectures offer SIMD (single instruction multiple data)
instructions, allowing to perform the same operation on multiple data points in one CPU cycle,
leading to what is known as the Vectorisation of computation. Vectorisation is used routinely
in data-intensive applications like multimedia processing [110] or deep learning [44, 135], and
is finding its way to data management, particularly in the sub-field of in-memory databases
[142, 105]. Relevant examples from a related field are the performant regular expression engine
Hyperscan [137] and the competitive engine of the RUST language [53], both relying crucially on
Vectorisation. In the context of streaming processing of tree-structured data, an early work on
parabix by Cameron et al. studies the use of SIMD instructions to accelerate XML parsing [25].
More recently, Langdale and Lemire illustrate how the performance of JSON parsers could be
vastly improved by using Vectorisation [75]. Their experiments confirm that the cost of parsing is
a large fraction of the total cost of query execution, matching the performance loss with respect
to regular expression matching. To get a better feeling of the room for improvement, let us look
at some numbers: the experiments had different setups, but the orders of magnitude are still of
interest. The standard C function memchr scans memory to find the first occurrence of a given
byte; it has been hand-optimised for various architectures and can be assumed to display the best
performance one could hope for in a streaming task. On a standard laptop computer, it easily
reaches 20Gb/s. The Hyperscan regular expression engine reaches performance of 10Gb/s [137].
Langdale et al. get up to 3Gb/s when parsing JSON files and selecting some nodes, but selecting
alone reaches 10Gb/s [75]. Palkar et al. explicitly put the blame on the incompatibility of
pushdown automata and Vectorisation [85].

To some extent this is explained by theory. An abstract model of exploiting local parallelism in
streaming algorithms was proposed in [82]: the stream is read in blocks, each block is processed
by a fixed Boolean circuit, and the result is fed back to the circuit together with the next block of
the stream. The degree of local parallelism of a language is measured by the complexity of the
circuit needed to recognise the language in the above model: the higher the complexity, the less
local parallelism. As shown in the paper, the degree of local parallelism of regular languages
matches their classical circuit complexity, and it is plausible that the situation is similar for

6.1. Weak validation 107

larger classes of languages. Assuming this is the case, successful Vectorisation of XML or JSON
parsers might be more tricky than for regular expression engines: Dyck languages (well-formed
multi-bracket expressions) are TC0-complete [15], but while regular languages may have even
higher complexity, the ones appearing in benchmarks are typically much simpler (for instance,
all examples in [53] and [141] are in AC0).

All this evidences that stack-based computation is troublesome. At the same time falling back
to finite automata severely limits expressivity, as revealed by the necessary conditions discovered
by Segoufin and Vianu [116]. As a middle ground, we propose to relax the computational model
just so. We allow one counter for maintaining the current depth in the document, and registers
for storing the current depth to be compared with the depths of later tags. In the resulting model,
dubbed depth-register automaton, transitions are performed at a very low CPU cost with almost
no external memory access. The latter depends on the number of registers; if the number is low
enough, it is even possible to keep all the values within the CPU’s registers and not use external
memory at all. Unlike pushdown automata, the model is amenable to Vectorisation and can
achieve high throughputs. Indeed, it has been successfully implemented by Gienieczko, Murlak
and Paperman [45] with their tool RsonPath. They can query a large fragment of JSONPath with
impressive performances, with strategies to skip part of a document.

Regular languages. To understand the power of (weakly) validating and querying streamed
tree with the means of finite-states machines, we propose to continue the work of Segoufin
and Vianu [116]. The goal is to explicit all the regular tree languages that can be validated in
streaming efficiently: ie. by a finite word automaton (or a depth-register automaton) being fed
by markup encodings of trees. Unfortunately, this is a hard task and we fall back to subclasses
of regular tree languages that are easier to handle. These restrictions are about languages of
trees that can check the form of the branches of a tree, but not their relations. It allows to apply
techniques from the world of words, which are better understood. In the end, we will extend
the results to the less verbose term encoding of trees, and we will draw a bridge with algebraic
classes.

6.1 Weak validation

From this point, and until the term encoding is considered in Section 6.4, encoding will be
silently referring to markup encoding.

The validation problem is the problem parameterised by a regular tree language L defined by:

• INPUT: a word w ∈ A∪ Ā.
• OUPUT: whether w is the markup encoding of a tree belonging in L.

Note that an algorithm for one of these problems has in particular to check that the word
w is a valid encoding of a tree. We want to find efficient algorithms to solve these problems,
and identify for which regular tree languages it is easy or complicated. In particular, we are
interested in the class of regular tree languages that are validatable in constant space, that is
to say the languages L such that ⟨L⟩ is recognised by a finite automaton. Not many languages
are in this class, for instance the regular languages of trees over {a} with a single leaf is not
validatable in constant space. Indeed, its set of encodings is {anān | n ∈N}, which is well known
for its non-regularity. This class have been precisely described by Segoufin and Vianu, using the
framework of (specialised) DTDs.

The graph Gd of a DTD d over A is the graph whose set of vertices is A and whose edges are
the couples (a,b) such that there is a rule a→ L where b is a letter of a word in L. A node is

108 CHAPTER 6. Processing Regular Properties of XML Documents

recursive if it belongs to some cycle. A DTD is non-recursive if its graph Gd is acyclic. We extend
this definition to specialised DTDs d = (A′ ,d′ ,µ) by asking that d′ is non-recursive.

Theorem 6.1 (Segoufin, Vianu [116, Theorem 3.1]).
A specialised DTD is validatable in constant space if and only if it is non-recursive.

It implies in particular that a tree language with trees of unbounded depth can never be
validated in constant space.

Hence, the problem of weak validation is more interesting. It is the validation problem, with
the additional assumption that the word w is valid, in the sense that it is the encoding of some
tree. In the case of constant space, the weak validation problem for L can be reformulated
as a separation problem: is there a regular language disjoint from ⟨L⟩ that contains ⟨Lc⟩? We
anticipate the introduction of the stackless model, and call registerless the languages that are
weakly validatable in constant space. The previous example of trees with a single leaf is now
registerless, as a separator is a∗ā∗. Identifying the regular tree languages that are registerless is
challenging and still open. This question can though be answered for DTDs of a certain shape.
A DTD d is fully recursive if all the nodes of Gd that can reach a recursive node are in the same
strongly connected component.

Theorem 6.2 (Segoufin, Vianu [116, Theorem 4.2]).
It is decidable whether a fully recursive specialised DTD is weakly validatable in constant
space.

We give an algebraic characterisation, based on forest algebras defined in Section 2.6, of the
regular tree languages that are registerless. Unfortunately, it will not be enough to a priori give
decidability.

We define the class of forest algebras such that the vertical action can be seen simulated in
the horizontal monoid.

Definition 6.3.
We say that a forest algebra (H,V) is horizontal if for every v ∈ V , there exists xv , yv ∈H such
that for every h ∈H

v · h = xv + h+ yv .

This class captures precisely the languages that are registerless.

Theorem 6.4.
A tree language L is weakly validatable in constant space if and only if it is recognised by an
horizontal forest algebra.

Proof. Assume that L is weakly validatable in constant space. Let A be an automaton that
accepts all word in ⟨L⟩ and rejects all words in ⟨Lc⟩. Let (M,+,0) be the transition monoid of A,
that we denote additively here. We will also need the natural morphism µ : (A∪ Ā)∗→M. We

6.1. Weak validation 109

define a forest algebra with H =M and V =M2 with the operation (x,y) · (x′ , y′) = (x+ x′ , y′ + y).
The action is defined as h 7→ x+ h+ y, for (x,y) ∈ V . For h ∈H , the operations inl(h) and inr (h)
are respectively defined as ((h,0)) and (0,h). The accepting subset ofH is the accepting subset of
M. This forest algebra is indeed finite and horizontal by definition. It can recognise L with the
morphism ν that associates (µ(a),µ(ā)) ∈ V to a seen as a context. We want to show by induction
that for every forest t, ν(t) = µ(⟨t⟩). For the base case, notice that both the empty forest and the
empty word are mapped to the identity of M. Assume that t = t1 + t2 such that the result is true
for t1 and t2. Then ν(t) = ν(t1)+ν(t2) = µ(⟨t1⟩)+µ(⟨t2⟩) = µ(⟨t1⟩⟨t2⟩) = µ(⟨t⟩). Assume that t = a(t′)
such that the result is true for t′ . Then ν(a(t′)) = ν(a)(ν(t′)) = µ(a)+µ(t′)+µ(ā) = µ(a⟨t′⟩ā) = µ(⟨t⟩).
Finally, t is accepted by (H,V) if and only if ⟨t⟩ is in L.

Now assume that L is recognised by an horizontal forest algebra (H,V) and a morphism
ν. For every letter a, by the horizontal property, there exist xa, ya ∈ H such that for every
h ∈ H , a(h) = xa + h + ya. We separate ⟨L⟩ and ⟨Lc⟩ with the monoid H and the morphism
µ : (A∪ Ā)∗→H defined by µ(a) = xa and µ(ā) = ya. The accepting subset is the same as the one
in the forest algebra. With the same computations as before, we prove that for every tree t,
ν(t) = µ(⟨t⟩).

□

Notice that we are not assuming regularity, hence the theorem gives that only regular
languages can be weakly validated in constant space. Unfortunately, being horizontal is not a
property that can be passed to a subalgebra. Indeed, there are no reasons for xv and yv to remain
in the subalgebra. Hence the set of all horizontal forest algebras is not a variety. This forbid us
from having a statement that identifies the registerless languages with those with an horizontal
syntactic forest algebra. Therefore we have to work with a subclass of regular tree languages. The
languages we consider are tied with regular word languages.

Definition 6.5.
Let L be a regular word language. Then EL is the regular language of trees that have a path
from the root to a leaf labelled with a word in L. Dually AL is the regular language of trees
such that all paths from the root to a leaf are labelled with a word in L.

Note that (AL)c = E(Lc). Languages of the form AL can express useful and nontrivial schema
restrictions, as they are able to specify which labels are allowed in the children of a node,
depending on regular properties of the path from the root.

So far we used automata as acceptors, defining languages of trees. However, we can also use
them as node selectors, defining queries over trees. By a query Q of arity k we mean a function
mapping each tree T to a setQ(T) of k-tuples of nodes of T . In the streaming setting, higher-arity
queries are problematic because a streaming algorithm using memory of size f (n) over inputs
of length n cannot return asymptotically more than f (n) ·n answers. This means that handling
even very simple queries of arity larger than one in sublinear memory is impossible without
compromising the semantics by applying restrictive selection strategies [140, 50] or heuristics like
load shedding [60]. Moreover, popular query languages for tree-structured data, like XPath or
JSONPath, focus on unary queries. We shall do the same.

Implementations of unary queries over streamed trees come in two distinct flavours, corre-
sponding to the two natural moments when one may wish the selected nodes to be returned:
at the opening tag or at the closing tag. Accordingly, we say that an automaton A pre-selects
(resp. post-selects) a node v of a tree T if A is in an accepting state directly after reading the
opening (resp. closing) tag of v. Both approaches have their merits. Post-selection gives more
expressive power, allowing to explore the subtree rooted at the given node. Pre-selection gives

110 CHAPTER 6. Processing Regular Properties of XML Documents

0 1b
a

a
b

1

Figure 6.1: A reversible finite automaton.

more flexibility in the subsequent stages of processing, allowing to return the whole subtree
rooted at the selected node without additional memory cost. Here we focus on pre-selection,
and leave post-selection for the future. Accordingly, we say that an automaton A realises a unary
query Q if for every tree T , A pre-selects exactly those nodes of T that belong to Q(T). We call
a unary query Q registerless if it can be realised by a finite automaton, that outputs a node
whenever an accepting state is reached.

Definition 6.6.
Let L be a regular word language. Then QL is the query that selects all nodes v such that the
path from the root to v is labelled by a word from L.

We call queries of this form regular path queries (RPQs). They include all XPath queries built
up from downward axes (child, descendent) and label tests, but not those using upward axes
(parent, ancestor) or filters.

6.2 Registerless languages

We give here a combinatorial description of the path languages and RPQs that are registerless.
We first focus on the more symmetric setting of querying, then we embark on the study of AL
and EL.

6.2.1 Almost-reversibility

How does one go about evaluating an RPQ with a finite automaton reading the markup encoding
of a tree? Over the leftmost branch this is easy: as long as only opening tags are read, we simulate
the automaton underlying the RPQ over the labels in the tags and accept whenever the simulated
automaton accepts. When the first closing tag appears, the simulated automaton should revert
to the state before reading the corresponding opening tag. Our simulation could store a bounded
suffix of the run of the simulated automaton, and use it when closing tags occur, but what shall
we do when it is used up? This is clearly not a sustainable strategy. The task does become feasible
if we assume that the previous state can be determined based on the current state and the last
read letter. Automata that have this property are called reversible.

Recall that in a deterministic automaton letters induce functions mapping states to states.
A deterministic automaton is reversible if every letter induces an injective function (Fig. 6.1).
Equivalently, one may assume that letters induce permutations of states, which implies that the
associated transition monoid is a group. Reversibility can be studied as a separate notion upon
extension to incomplete automata, where letters induce partial functions over states [96].

The simulation above captures RPQs given by reversible automata, but we can do a bit more.
Consider the automata depicted in Fig. 6.2. None of them is reversible because the function
induced by the letter a is not injective. However, the automaton in Fig. 6.2a defines a registerless

6.2. Registerless languages 111

0

1

2

3

a

b, cb a, c

a, c

b

a, b, c
1

(a) aA∗b

0

1

2

3

a

b, cb

a, c

a, b, c

a, b, c
1

(b) ab

0

1

2

a

b, c

b

a, c

a, c

b
1

(c) A∗aA∗b

0

1

2

a

b, c

b

a

c

a

b, c

1

(d) A∗ab

Figure 6.2: Languages of increasing hardness over A = {a,b,c}.

RPQ. Indeed, the realising finite automaton should check that the first opening tag has label a
and then it should accept at each opening tag with label b. Those in Figs. 6.2b to 6.2d are not
registerless and it will follow from our characterisation theorems.

In order to capture registerless RPQs precisely, we carefully relax the notion of reversibility.
Unlike reversibility itself, its relaxed variant is dependent on which states are accepting. Let us
fix a deterministic automaton A. We say that states p and q are equivalent if for every word w,
p ·w ∈ F iff q ·w ∈ F. In a minimal automaton, equivalent states are equal. We say that states p and
q are almost equivalent if for every non-empty word w, p ·w ∈ F iff q ·w ∈ F. That is, non-empty
words do not distinguish almost equivalent states; it follows immediately that after reading any
letter the states become indistinguishable.

Lemma 6.7.
If states p and q are almost equivalent, then for each letter a, the states p · a and q · a are
equivalent.

We shall call a state p of automaton A internal if it is reachable from the initial state via a
nonempty word. Note that if all states are reachable, only the initial state can be non-internal,
and it happens only iff it has no incoming transitions.

Definition 6.8.
We say that states p and q meet in state r if there exists a word u such that p ·u = q ·u = r; we
say p and q meet if they meet in some state r. A deterministic automaton is almost-reversible
if every two internal states that meet are almost equivalent. We call a regular language
almost-reversible if its minimal automaton is almost-reversible.

As intended, the automaton in Fig. 6.2a is almost-reversible, while those in Figs. 6.2b to 6.2d
are not.

It will be useful to have a seemingly restricted notion of almost-reversibility, to have witnesses
of non almost-reversibility of a special form.

112 CHAPTER 6. Processing Regular Properties of XML Documents

Lemma 6.9.
A minimal deterministic automaton is almost-reversible if and only if every two internal
states p and q that meet in q are almost equivalent.

Proof. This inclusion from left to right is clear. For the other direction, we assume that A is
not almost-reversible: there exists two internal states p,q such that p and q meet and are not
almost-equivalent. In particular p and q are distinct.

We call a SCC X in A a sink if for each q ∈ X and each u ∈ A∗ , q ·u ∈ X. We know that p and
q meet in a sink SCC X: there exists r ∈ X and u ∈ A∗ such that p ·u = q ·u = r. We want to find
a state s in X such that p and s meet in s, and q and s meet in s. Because X is a sink, p ·un ∈ X
for all n > 0. Consequently, there exist n,k > 0 such that p ·un = p ·un ·uk . Moving n positions
backwards in the cyclic list of states p · un,p · un+1, . . . ,p · un+k−1, starting from p · un, we find
a state s = p · un+k−n mod k ∈ X that meets with p. Because X is a sink, p and s can only meet
in X. But then p and s also meet in s. Remark that p and s meet with a word of the form uk ,
thus q ·uk = p ·uk = s ·uk . Now one of the couple (p,s) or (q,s) has to be non almost-equivalent,
otherwise the transitivity of the relation would imply that p and q are almost equivalent.

□

We can now state the main theorem of the section.

Theorem 6.10.
Let L be a regular language.

Then QL is a registerless query if and only if L is almost-reversible.

We will prove both directions.

Lemma 6.11.
If L is an almost-reversible language, then QL is a registerless query.

Proof. Let A be the minimal automaton of L. The simulating automaton B will use the same
states as A together with an additional rejecting sink state ⊥; the initial state and the set of
accepting states are also like inA. When reading opening tags, B follows the transition relation
of A. Upon reading a closing tag ā in a state p, B moves to some internal p′ in A such that p′ · a
is almost equivalent to p. To keep B deterministic, we take the minimal such p′ according to an
arbitrarily chosen order on the states of A. If such a state p′ does not exists, B moves to ⊥.

Consider an input tree T . For each prefix w of ⟨T ⟩, let ŵ be the word obtained from w by
successively erasing all two-letter subwords of the form aā for a ∈ A. If w ends with the opening
tag of a node x in T , then ŵ is the sequence of labels on the shortest path from the root of T
to x. If w ends with the closing tag of a node x in T , then ŵ is the sequence of labels on the
shortest path from the root of T to the parent of x (if x is the root of T , then the path is empty).
We claim that for every proper nonempty prefix w of ⟨T ⟩, the state pw of B after reading w is a
an internal state of A that is almost equivalent to the state qŵ of A after reading ŵ, and if the
last letter of w is an opening tag, then pw = qŵ. The claim immediately implies that B realises
QL, because the first and the last state of B in the run on ⟨T ⟩ does not matter.

We prove the claim by induction on |w|. The automaton B begins the computation in the

6.2. Registerless languages 113

s

tun! un!

(a) Tree S.

s

un!

tun! un!

(b) Tree S ′ .

Figure 6.3: Fooling trees in Lemma 6.12.

initial state of A. The first letter of ⟨T ⟩ is some opening tag a. Because â = a, we have pa = qâ
and pa is clearly internal. Suppose now that the claim holds for w. If the next letter after w is
an opening tag c, applying Lemma 6.7 to the almost equivalent states pw and qŵ of A, we get
pwc = pw · c = qŵ · c = qŵc, and we are done because qŵ · c is clearly internal. Suppose that the
next letter read by B is a closing tag c̄. We need to prove that there exists an internal state p′

in A such that p′ · c is almost equivalent to pw, and that every such p′ is almost equivalent to
qŵc̄. Consider p′ = qŵc̄. Because wc̄ is a proper prefix of ⟨T ⟩, the word ŵc̄ is nonempty; hence,
qŵc̄ is a internal state of A. We also have qŵc̄ · c = qŵ, and we have assumed that pw and qŵ are
almost equivalent; hence, qŵc̄ · c is almost equivalent to pw. So, indeed, qŵc̄ is a correct choice
for p′. Let us now take any internal p′ with p′ · c almost equivalent to pw, and prove that p′ is
almost equivalent to qŵc̄. As pw and qŵ are almost equivalent by the induction hypothesis, it
follows that so are p′ · c and qŵ. By Lemma 6.7, p′ · c · b = qŵ · b = qŵc̄ · c · b for each b ∈ A. Hence,
p′ and qŵc̄ meet. We have already argued that qŵc̄ is internal, and p′ is internal by assumption.
Because A is almost-reversible, we conclude that p′ is almost equivalent to qŵc̄. □

The other direction is proved by pumping simultaneously at the level of trees and their en-
codings, which resembles pumping arguments for context free grammars. To simplify factorising
encodings of trees, for a word w = a1a2 · · ·an ∈ A∗ we let w̄ = ān · · · ā2 ā1 (note the reversed order).
Consider the tree S shown in Fig. 6.3a, keeping in mind that s, t,u,x are words rather than single
letters: each node labelled with a word w represents a chain of |w| nodes whose labels form the
word w. Then,

⟨S⟩ = sun!ūn!tt̄un!ūn!s̄ .

We use S in the proof of the following lemma.

Lemma 6.12.
For a regular language L, if QL is a registerless query, then L is almost-reversible.

Proof. Suppose that the minimal automaton A of L ⊆ A∗ is not almost-reversible. We use the
alternative definition from Lemma 6.9. Let i be the initial state of A. Then, there exist words
s, t,u ∈ A+ and states p, q such that i · s = p, p ·u = q ·u = q and p · t is accepting iff q · t is rejecting.
It follows that for each k > 0, st ∈ L iff sukt ∈ Lc.

Consider a deterministic finite automaton B over A∪ Ā with n states. It is well known that
r ·wn! = r ·w2·n! for each nonempty word w and each state r of B.

Consider the trees S and S ′ shown in Fig. 6.3. By the discussion above, the node t is selected
in exactly one of those trees by QL. Consider the runs of B on ⟨S⟩ and ⟨S ′⟩. Suppose that on
⟨S⟩ we have

q0
sun!

−−−→ q1
ūn!·t−−−−→ q2

t̄·un!ūn!

−−−−−−→ q3
s̄−→ q4 .

114 CHAPTER 6. Processing Regular Properties of XML Documents

Then, by the choice of n, we have

q0
sun!

−−−→ q1
un!

−−−→ q1
ūn!·t−−−−→ q2

t̄·un!ūn!

−−−−−−→ q3
ūn!

−−−→ q3
s̄−→ q4 .

It follows that B selects t in ⟨S⟩ iff it selects t in ⟨S ′⟩. Consequently, B does not implement
QL. □

6.2.2 Flatness

Not all finite languages are almost-reversible, as witnessed by the one in Fig. 6.2b. Nevertheless,
if L is finite, then AL is registerless. Indeed, a finite automaton can simply simulate the stack up
to the depth bounded by the length of the longest word in L. If an opening tag is read when the
stack is at its maximum depth, the automaton moves to an all-rejecting sink state. Symmetrically,
if L is co-finite (that is, Lc is finite), then EL is registerless. This motivates the following dual
notions.

Definition 6.13.
We call a state q acceptive (resp. rejective) if q ·w is accepting (resp. rejecting) for somew ∈ A∗. A
deterministic automaton is E-flat (resp. A-flat) if for every internal state p and every rejective
(resp. acceptive) state q, if p meets with q in q, then p is almost equivalent to q. A E-flat (resp.
A-flat) language is a regular language whose minimal automaton is E-flat (resp. A-flat).

Checking that all finite languages (including the one in Fig. 6.2b) are A-flat, and all co-
finite ones are E-flat is an easy exercise. The following lemma, connecting flatness to almost-
reversibility is not hard either.

Lemma 6.14.
Let L ⊆ A∗ be a regular language.

i) L is A-flat iff Lc is E-flat.
ii) L is almost-reversible iff it is both A-flat and E-flat.

Proof. LetA be the minimal automaton of L. ThenAc, obtained fromA by swapping accepting
and rejecting states, is the minimal automaton of Lc. A state q is acceptive in A iff it is rejective
in Ac. It follows that A is A-flat iff Ac is E-flat.

The second part is immediate with Lemma 6.9. □

We can state our characterisation theorem in the validation setting.

Theorem 6.15.
Let L be a regular language, then

• EL is registerless iff L is E-flat.
• AL is registerless iff L is A-flat.

We prove both direction successively. More effort is needed to show that E-flatness of L is
sufficient to simulate its minimal automaton faithfully enough to support recognising EL.

6.2. Registerless languages 115

Lemma 6.16.
If L is an E-flat language, then EL is a registerless tree language.

Proof. Let A be the minimal automaton of L. We first construct an automaton B simulating A
in a certain precise sense, and then we turn B into an automaton recognising EL.

Like in the simulation of almost-reversible automata, the high-level idea is to maintain
the state of A after processing ŵ up to almost equivalence, except that if at any point the
maintained state becomes non-rejective, the simulating automaton moves to an all-accepting
sink state ⊤. But because the internal structure of E-flat automata is much richer then that of
almost-reversible ones, the simulating automaton B needs more information.

After reading a prefix w of the encoding of the input tree, the simulating automaton B will
store a synopsis of the run of A on ŵ. The goal of the synopsis is to list the transitions that
moved the run from one SCC of A to the next one. However, because the automaton A is not
reversible, taking the transitions backwards when processing closing tags will introduce certain
ambiguity into the stored transitions. Namely, the origins of the transitions will be split states,
defined as pairs (p,q) such that q is rejective and either p = q or p is internal and meets with q in
q. E-flatness guarantees that for each split state (p,q), the states p and q are almost equivalent.
By minimality, transitions from split states have unambiguous targets.

A split transition is a tuple (p,q,a, r) such that (p,q) is a split state and p · a = q · a = r. A
synopsis for A is an alternating sequence of state triples and letters, written as

(r0,p0,q0)
a1−−→ (r1,p1,q1)

a2−−→ ·· ·
aℓ−−→ (rℓ ,pℓ ,qℓ) , (6.1)

such that r0 is the initial state of A, each (pi ,qi , ai+1, ri+1) is a split transition in A, (pℓ ,qℓ) is a
split state in A, and

• for each i < ℓ, the states qi and ri+1 are in different SCCs;
• for each i ≤ ℓ, qi belongs to the SCC of ri and either pi belongs to the SCC of ri or i > 0

and pi = pi−1 = qi−1.

Observe that the states qi represent a chain of different SCCs, so ℓ + 1 is bounded by the depth
of the DAG of SCCs of A.

The empty word ε is compatible only with synopses (r0,p0,q0) with r0 ∈ {p0,q0}. For u ∈ A∗
and a ∈ A, the word ua is compatible with a synopsis σ of the form (6.1) if r0 ·ua ∈ {pℓ ,qℓ} and
one of the following holds:

(a) r0 · u is in the SCC of r0 · ua, and u is compatible with the synopsis obtained from σ by
replacing (rℓ ,pℓ ,qℓ) with (rℓ , r0 ·u,r0 ·u);

(b) ℓ > 0, r0 ·u ∈ {pℓ−1,qℓ−1}, a = aℓ , and u is compatible with the synopsis obtained from σ by

removing the suffix
aℓ−−→ (rℓ ,pℓ ,qℓ);

(c) ℓ > 0, r0 ·ua = pℓ = pℓ−1 = qℓ−1, and ua is compatible with the synopsis obtained from σ

by removing the suffix
aℓ−−→ (rℓ ,pℓ ,qℓ).

Note that if some u is compatible with σ and r0 ·u = pℓ , then u is compatible with every synopsis
obtained from σ by replacing qℓ with some other state; similarly with pℓ and qℓ swapped.

The states of B include all synopses for A and two sink states: all-accepting ⊤ and all-
rejecting ⊥. The simulation invariant is that after processing a proper prefix w of the encoding
of the input tree, either B is in the state ⊤ and r0 · v̂ is non-rejective for some prefix v of w, or B
is in a synopsis state σ and ŵ is compatible with σ and if the last symbol of w is an opening tag

116 CHAPTER 6. Processing Regular Properties of XML Documents

then pℓ = qℓ.
Let r0 be the initial state of A. If r0 is rejective, the initial state of B is (r0, r0, r0); otherwise,

it is ⊤. The invariant clearly holds before the first tag is processed. Let us see how to define
transitions from a synopsis state σ of the form (6.1) to propagate the invariant.

Suppose that an opening tag a is read and let s = pℓ · a = qℓ · a. If s is not rejective, move to ⊤.
If s is rejective and belongs to the SCC of qℓ, continue with (rℓ ,pℓ ,qℓ) replaced with (rℓ , s, s) in
σ . If s is rejective but does not belong to the SCC of qℓ, continue with

a−→ (s, s, s) appended to σ .
The invariant propagates.

Suppose a closing tag ā is read. If pℓ is not internal, then pℓ = qℓ = r0, which is only possible
if σ = (r0, r0, r0). The automaton B then moves to ⊥. Assume that the invariant holds before ā is
processed. Then, r0 · w̄ = r0. Because r0 is not internal, it follows that w is empty. Hence, wā = ā,
which is not a prefix of the encoding of any tree, and the state of B after processing wā does
not matter. If pℓ is internal, we consider four cases depending on whether pℓ and qℓ are in the
same SCC of A, and whether the shape of the synopsis allows backtracking via a transition that
originates outside of the SCC of qℓ.

Case A: pℓ and qℓ are in the same SCC X, and either rℓ < {pℓ ,qℓ} or a , aℓ or pℓ−1 is not
internal; that is, we can only take (backward) transitions within X. Consider

P =
{
p ∈ X

∣∣∣ p · a ∈ {pℓ ,qℓ}} .
Because X contains the internal state pℓ and the rejective state qℓ, all states in X are internal
and rejective. The same holds for P ⊆ X. Pick any two p,q ∈ P . Because pℓ and qℓ meet inside
X, so do p and q. It follows that p and q meet in q. Hence, (p,q) is a split state, and p and
q are almost equivalent. In a minimal automaton there can be at most two different almost
equivalent states, so |P | ≤ 2. If P = ∅, then B moves to ⊥. Otherwise, P = {p′ ,q′} for some p′

and q′, and B continues, replacing (rℓ ,pℓ ,qℓ) with (rℓ ,p′ ,q′). Suppose that the invariant holds
before ā is processed. If it holds by (6.2.2), then r0 · ŵā ∈ P = {p′ ,q′} and ŵā is compatible with
the synopsis obtained from σ by replacing (rℓ ,pℓ ,qℓ) with (rℓ , r0 · ŵā, r0 · ŵā). Suppose that the
invariant holds by (6.2.2). This implies that rℓ ∈ {pℓ ,qℓ} and a = aℓ , so it must be the case that pℓ
is not internal. Then qℓ is equal to pℓ, so not internal either. By (6.2.2), r0 · ŵā ∈ {pℓ−1,qℓ−1}, so
it is non-internal too. Consequently, ŵā is the empty word, which is possible only if wā is the
complete encoding of the input tree. But then the invariant is not required to hold. Finally, the
invariant cannot hold by (6.2.2), because it would imply that qℓ−1 and qℓ are in the same SCC,
which is forbidden by the definition of synopsis.

Case B: pℓ and qℓ are in the same SCC X, and also rℓ ∈ {pℓ ,qℓ}, a = aℓ, and pℓ−1 is internal;
that is, we can also take (backward) transitions that leave X. Note that this is possible only if
ℓ > 0. Consider again the set P ⊆ X introduced above. If P = ∅, then B continues, removing the

suffix
aℓ−−→ (rℓ ,pℓ ,qℓ) from the synopsis. In this case, only the condition (6.2.2) of the invariant

might hold before processing ā, so ŵā is compatible with the modified synopsis, and the
invariant propagates. Assume that P is nonempty. Let p′ ∈ {pℓ−1,qℓ−1} and q′ ∈ P . We know
that p′ · a and q′ · a belong to {pℓ ,qℓ}, and that pℓ and qℓ meet in X, so we also have that p′

and q′ meet in X. Because q′ ∈ P ⊆ X, it follows that p′ and q′ meet in q′. As pℓ−1 is assumed
to be internal, so is qℓ−1, and consequently also p′. The state q′ is rejective because all states
in P are. It follows that (p′ ,q′) is a split state, so p′ and q′ are almost equivalent. Because
p′ ∈ {pℓ−1,qℓ−1} ⊆ Xc and q′ ∈ P ⊆ X, we conclude that p′ , q′. Using again the fact that there
are at most two different almost equivalent states in every minimal automaton, we get that
p′ = pℓ−1 = qℓ−1 and {q′} = P . The automaton B continues, replacing (rℓ ,pℓ ,qℓ) with (rℓ ,p′ ,q′) in

6.2. Registerless languages 117

the synopsis σ . If the invariant holds before processing ā, then either (6.2.2) or (6.2.2) holds. If
(6.2.2) holds, then r0 · ŵā = q′, and the invariant propagates like before. If (6.2.2) holds, then
r0 · ŵā = p′ = pℓ−1 = qℓ−1, and after processing ā, (6.2.2) will hold.

Case C: qℓ is in SCC X but pℓ < X, and either rℓ < {pℓ ,qℓ} or a , aℓ . We then have pℓ = pℓ−1 =
qℓ−1. Suppose p · a = pℓ for some internal p and q · a = qℓ for some q ∈ X. Then it easily follows
that p meets with q in q, and so p and q are almost equivalent. Consequently, p · a = pℓ and
q · a = qℓ are equal, which is impossible because pℓ < X. Thus, p and q cannot both exist.

If p does not exist, B moves to the state it would take from the synopsis σ ′ obtained from the
current one by replacing (rℓ ,pℓ ,qℓ) with (rℓ ,qℓ ,qℓ) in σ . Note that σ ′ falls into Case A. Suppose
that the invariant holds before processing ā. If it is by (6.2.2), then r0 · ŵ = qℓ, so ŵ will also be
compatible with σ ′ and the invariant will propagate as shown in Case A. The invariant cannot
hold by (6.2.2), because this would imply that rℓ ∈ {pℓ ,qℓ} and a = aℓ , and we have assumed the
contrary. Suppose that the invariant holds by (6.2.2). Then (r0 · ŵā) · a = r0 · ŵ = pℓ. But, as we
have shown, there are no internal states p such that p · a = pℓ. Hence, r0 · ŵā is a noninternal
state. This is possible only if ŵā is empty. Then, wā is the whole encoding of the input tree,
and the invariant is not required to hold any more.

If q does not exist, the state is chosen similarly, but this time we obtain σ ′ by removing the

suffix
aℓ−−→ (rℓ ,pℓ ,qℓ) from σ . Note that σ ′ falls into Case A or Case B: pℓ−1 is internal because it

is equal to pℓ, and pℓ−1 and qℓ−1 are in the same SCC because they are equal. If the invariant
holds before processing ā, then it must be by (6.2.2). Then, ŵ will also be compatible with σ ′ ,
and the invariant will propagate as shown in Cases A and B.

Case D: qℓ is in SCC X but pℓ < X, and both rℓ ∈ {pℓ ,qℓ} and a = aℓ. It then follows that
pℓ = pℓ−1 = qℓ−1 and rℓ = qℓ. Consequently, pℓ · a = qℓ and, because pℓ and qℓ are almost
equivalent, qℓ · a = qℓ. Suppose that p · a = pℓ for some internal state p. Then, we have
p · aa = qℓ · aa = qℓ ; that is, p meets with qℓ in qℓ . Since qℓ is rejective, it follows that p and qℓ are
almost equivalent. But that means that pℓ = p ·a = qℓ ·a = qℓ , which is impossible because pℓ < X.
Hence, no such p exists. Suppose that q ·a = qℓ for some q ∈ X \ {qℓ}. Then q ·a = qℓ ·a = qℓ and it
follows that q is almost equivalent to qℓ. But this is impossible because together with pℓ < X
this would give three different almost equivalent states. Hence, such q also does not exist. We
let B continue with the same synopsis. Suppose that the invariant holds before processing ā.
If it is by (6.2.2), then r0 · ŵā = qℓ, because it is the only state in X from which the transition
over a leads to {pℓ ,qℓ}, and the invariant propagates. If the invariant holds by (6.2.2), then
r0 · ŵā ∈ {pℓ−1,qℓ−1}, but pℓ−1 = qℓ−1 = pℓ, so for ŵā and σ we will have (6.2.2).

Finally, if the invariant holds by (6.2.2), it follows that wā is the whole encoding of the input
tree, like in the first subcase of Case C, and the invariant is not required to hold any more.

This completes the construction of B and the proof that every run of B over the encoding of
a tree T satisfies the invariant. Directly from the invariant it follows that after reading a prefix
wa of ⟨T ⟩ for a opening tag a, we have pℓ = qℓ = r0 · ŵa. To recognise EL it suffices to enrich the
synopsis states of B with the information about the most recently read tag, and move directly
to ⊤ whenever a closing tag ā is read in a state storing the opening tag a and a synopsis with
pℓ = qℓ accepting in A. The resulting automaton B′ enters ⊤ in the situation described above
or if it encounters a prefix v of the encoding such that r0 · v is not rejective. In the first case,
the automaton B′ has detected a leaf such that the branch leading to it is labelled by a word
from L. In the second case, B′ has detected a node such that each branch containing this node
is labelled by a word from L. Correctness of B′ follows. □

The other direction is very similar to the proof of Lemma 6.12.

118 CHAPTER 6. Processing Regular Properties of XML Documents

s

tun!

x

un!

x

(a) Tree S.

s

un!

tun!

x

un!

x

(b) Tree S ′ .

Figure 6.4: Fooling trees in Lemma 6.17.

Lemma 6.17.
For a regular language L, if EL is registerless then L is E-flat.

Proof. Suppose that the minimal automaton A of L is not E-flat. Let i be the initial state of A.
Then, there exist words s, t,u ∈ A+, x ∈ A∗ and states p, q such that i · s = p, p ·u = q ·u = q, q ·x is
rejecting, and p · t is accepting iff q · t is rejecting. It follows that for each k > 0, sukx ∈ Lc, and
st ∈ L iff sukt ∈ Lc.

Now the pumping is exactly the same as in the proof of Lemma 6.12, with the trees of
Fig. 6.4 that have two more leaves labelled with x.

□

6.3 Stackless model

Under the markup encoding, finite automata are unable to check even the simplest properties
of the input document: for instance, determining if one marked node is a child, descendant, or
sibling of another marked node requires a stack—or at least a counter, used to compare depths
of nodes. Realising multiple such tasks simultaneously seems to lead to multi-counter automata,
which are notoriously hard to analyse. We take a different path: we allow only one counter, used
exclusively to maintain the current depth in the tree, but additionally equip the automaton with
a bounded number of registers, which can be used to store depths of critical nodes, and compare
them later with the current depth. To keep our automata executable efficiently, we assume
that they are deterministic. Thus we arrive at deterministic input-driven 1-counter automata
with registers. ‘Input-driven’ is the standard terminology for counters or stacks that evolve
independently of the state [20, 36]. Here it means that the counter increases by one with each
opening tag read, and decreases by one with each closing tag read; such automata (without
registers) are also called visibly counter automata [9]. Importantly, the only tests allowed on the
values stored in registers are order comparisons with the current depth.

6.3.1 Depth-register automata

We can formally defined the announced model of computation.

Definition 6.18.

6.3. Stackless model 119

A depth-register automaton A is a tuple

(A,Q,qinit,F,Ξ,δ) ,

where

• A is a finite alphabet,
• Q is a finite set of states,
• qinit ∈Q is the initial state,
• F ⊆Q is the set of accepting (final) states,
• Ξ is a finite set of registers,
• δ :Q × (A∪ Ā)× 2Ξ × 2Ξ→ 2Ξ ×Q is the transition function.

A configuration of A is a tuple (q,d,η) ∈Q ×Z×ZΞ, whose components specify the state, the
current depth, and the values stored in the registers, respectively. We call a configuration (q,d,η)
accepting if q ∈ F. The initial configuration is cinit = (qinit,0,ηinit) where ηinit(ξ) = 0 for all ξ ∈ Ξ.

The run of A over a word a1a2 . . . an ∈ (A∪ Ā)∗ from a configuration (q0,d0,η0) is the unique
sequence of configurations

(q0,d0,η0)(q1,d1,η1) . . . (qn,dn,ηn) ∈
(
Q ×Z×ZΞ

)∗
such that for each i ∈ {1,2, . . . ,n}, there exists Yi ⊆ Ξ such that

• di =

di−1 + 1 if ai ∈ A,
di−1 − 1 if ai ∈ Ā ;

• δ(qi−1, ai ,X
≤
i ,X

≥
i) =

(
Yi ,qi

)
where

X≤i = {ξ ∈ Ξ
∣∣∣ ηi−1(ξ) ≤ di} ,

X≥i = {ξ ∈ Ξ
∣∣∣ ηi−1(ξ) ≥ di} ;

• for each ξ ∈ Ξ,

ηi(ξ) =

di if ξ ∈ Yi ,
ηi−1(ξ) if ξ < Yi .

We write c ·w for the last configuration of the run on w from c. If c ·w = c′ , we also write c
w−→ c′ .

By the run of A on w we understand the run on w from cinit. We say that w is accepted by A if
cinit ·w is accepting. The language recognised by A is the set of words accepted by A.

Depth-register automata without registers (that is, with Ξ = ∅) are a notational variant of
deterministic finite automata over the alphabet A∪ Ā.

The languages that are weakly validatable with a dept-register automata are said to be
stackless. A query is stackless if it can be implemented by a depth-register automaton.

To conclude the discussion of the automata model, let us point out that the kind of tests
allowed on registers is a natural parameter of the definition. For instance, one could allow
testing if the current depth differs from the content of a given register by a specified constant;
this kind of test can be simulated in our model at the cost of using additional registers. An
interesting proper extension is to allow semilinear conditions, like testing equality modulo a
specified constant. Finally, forsaking any hope of decidability of emptiness (which might be
tolerable), one could go up to full arithmetics. Owing to their determinism, depth-register
automata in all these variants would be efficiently executable in practice, using only a constant

120 CHAPTER 6. Processing Regular Properties of XML Documents

number of variables (possibly just CPU registers).
We give several example of the power of such automata with registers.
First note that stackless languages need not to be regular.

Example 6.19.
The set of trees over the alphabet {a,b} in which all a-labelled nodes are at the same depth,
can be recognised by a depth-register automaton. The first time the automaton sees a, it stores
the current depth in its only register. Then, every time it sees a it checks if the current depth
is equal to the stored value, and if it is not, it moves to a rejecting sink state.

How far do stackless tree languages go beyond registerless? Let us see how depth-register
automata can deal with sequences of siblings and the descendent relation.

Example 6.20.
Consider a regular language L ⊆ A∗ and the set HL of trees over A such that the sequence
of labels read from the children of the root forms a word in L. Depending on L, the tree
language HLmay be registerless or not. For instance, for L = A∗aA∗, HL is not registerless,
because a finite automaton cannot determine whether the current tag with label a belongs to
a child of the root. This follows form our general result Theorem 6.15 applied to the set of
trees that contain a branch labelled by a word from AaA∗.

In contrast, HL is stackless for all regular L. Indeed, after reading the first tag (which
must be an opening tag in a valid encoding), the automaton stores the current depth (which is
1) in its only register, and then simulates the finite automaton recognising L over all closing
tags for which the current depth is equal to the value stored in the register. This is correct,
because in each valid encoding all closing tags with current depth 1 belong to the children of
the root.

Example 6.21.
Consider the set of trees over the alphabet {a,b,c} where the first a-labelled node (in the
document order) has a b-labelled descendent. To recognise this language, the automaton
should read the input word until it sees a, load the current depth to its only register, and
accept iff it sees the letter b before the current depth drops strictly below the stored value
(this will indicate, that the corresponding closing tag has been read). Now, consider the set of
trees over {a,b,c} where some a-labelled node has a b-labelled descendant. It suffices to test
this property for minimal a-labelled nodes (that is, those without a-labelled ancestors): if a
node has a b-labelled descendent, so do all its ancestors. Hence, to recognise the described
language it suffices to run the automaton described above in a loop, returning to the initial
state whenever the current depth drops strictly below the stored value, until it accepts.

The main weakness of depth-register automata when applied to processing trees is their
limited ability to handle the child relation, as revealed by the following example.

6.3. Stackless model 121

Example 6.22.
Consider the language of trees over the alphabet {a,b,c} where some a-labelled node has a
b-labelled child. It might appear that this language is stackless because it is easy to identify
an a-labelled node and a single register is sufficient to identify the tags of its children in
the encoding. Indeed, this idea can be used to recognise the language of trees where some
minimal a-labelled node has a b-labelled child, just like we did for b-labelled descendants in
Example 6.21. Without the minimality assumption, however, the subautomaton searching
for b-labelled children needs to be relaunched whenever the opening tag a is read, which
may well happen before the previous instance of the subautomaton terminates. Each launch
requires a new register to store the return point. Because the input tree may contain arbitrarily
long chains of a-labelled nodes, this does not seem feasible with any fixed number of registers.
That it is indeed infeasible follows from the general characterisation result we establish in the
next subsection.

The method from Example 6.21 can be extended to test the existence of multiple nodes
with specified labels and descendent relationships between them. By a descendent pattern we
shall understand a finite tree over A. A tree T contains a descendent pattern π if there exists a
matching function h that maps nodes of π to nodes of T such that for all nodes u,v of π:

• the label of u coincides with the label of h(u);
• if v is a child of u, then h(v) is a descendent of h(u).

Fact 6.23.
For each descendent pattern π, the set of trees containing π is stackless.

Proof. By a slight abuse of the definition of depth-register automata, we shall allow automata
that can stop; that is, in some configurations there may be no transition to take. We prove by
induction on the height of π that there is an automaton Aπ that recognises trees that contain π
and stops upon reading the closing tag corresponding to the first opening tag of its input.

If π consists of a single node, the automaton loads into its only register the current depth
before reading any tags, scans the input until the current depth again becomes equal to the
stored value. Then it moves to a state without outgoing transitions that is accepting or not,
depending on whether the automaton has detected a tag with the label from the root of π or
not.

Suppose that the root of π has some children. By the inductive hypothesis, there is an
automaton Aπ′ for each descendent pattern π′ corresponding to an immediate subtree of π.
Let A be the synchronous product of all these automata, recognising the intersection of the
languages recognised by its components. Like in Example 6.21, we can assume that the root of
π is matched to a minimal element with the desired label. The automaton Aπ loads the current
depth before reading any tags into its first register, and then processes the input looking for the
first opening tag with the same label as the root of π. If Aπ does not see one before the current
depth is again equal to the stored value, it rejects. If it does find one, it calls the automaton A
using a set of registers excluding the first one and waits until A stops. If A accepts, Aπ waits
until the current depth becomes equal to the value stored in the first register, and accepts. If A
rejects, Aπ moves on to the next opening tag with the same label as the root of π. □

Finally, let us point out that the ability to deal with sequences of siblings, demonstrated in
Example 6.20, is limited to nodes that are close to the root. The following example shows why.

122 CHAPTER 6. Processing Regular Properties of XML Documents

b
...

b

b

b
...

b

b

a?

a?

a?

a?

a?

c?

c?

c?

c?

c?

(a) Trees from Kn.

b
...

b

b

b
...

b

b

a?

a?

a

a?

a?

c

(b) Match.

b
...

b

b

b
...

b

b

a?

a?

a?

a?

c

(c) No match..

Figure 6.5: Fooling trees for several siblings.

Example 6.24.
Even a finite automaton can check if the streamed tree contains two consecutive siblings with
labels a and b: it suffices to check if the read encoding contains the closing tag ā followed
immediately by the opening tag b. Consider, however, the set of trees that contain three
consecutive siblings with labels a, b, c. This language is not stackless. Indeed assume that
this language is recognised by a depth-register automaton B with m states and l registers. For
a size n, we define Kn to be the set of trees that have the main branch labelled by the word
bn, and additionally each b-labelled node may have a c-labelled child to the right of the main
branch, and each b-labelled node may have an a-labelled child to the left of the main branch
except for the last one. Such trees are pictured in Fig. 6.5a. For a tree T like this, let wT be the
prefix of ⟨T ⟩ ending at the opening tag of the deepest b-labelled node. Let cinit be the initial
configuration of B.

A configuration cinit ·wT is composed by a state, the depth n, and a value in {0, . . . ,n} for
every register. That is, m · (n + 1)l configurations are possible. But there are 2n−1 ways to
choose which b-labelled non-leaf nodes have an a-labelled child, so

∣∣∣{wT ∣∣∣ T ∈ Kn}∣∣∣ = 2n−1.

Consequently, for sufficiently large n, there exist two different words u and v in {wT
∣∣∣ T ∈ Kn},

such that cinit ·u = cinit ·v. Because u , v, there exists i ∈ {1,2,3, . . . ,n} such that for all S,T ∈ Kn,
if u = wS and v = wT , then the ith b-labelled node has an a-labelled child in S iff it does not
have one in T . Let us choose S and T such that in both of them, the ith b-labelled node has
a c-labelled child and there are no other c-labelled nodes, as shown in Figs. 6.5b and 6.5c.
Clearly, the tree in Fig. 6.5b contains three sibling labelled by a, b and c. It is not difficult to
verify that the one in Fig. 6.5c does not. However, from the definition of S and T it follows
that ⟨S⟩ = uw′ and ⟨T ⟩ = vw′ for some w′ , and because cinit ·uw′ = cinit · vw′ , we conclude that
S and T are indistinguishable to B.

Thus, depth-register automata are able to express involved global properties of trees (Fact 6.23),
far out of reach of finite automata, yet they cannot handle many properties that appear local but
lose their locality when seen as properties of the encodings (Examples 6.22 and 6.24). Character-
ising stackless tree languages seems to be challenging, but in the following we solve the special

6.3. Stackless model 123

case of tree languages defined in terms of properties of branches.

6.3.2 Hierarchical almost-reversibility

We have already developed intuitions on evaluating RPQs over markup encodings using finite
automata. Can we do more using the depth information and the (limited) ability to process it
offered by the registers? Using one register and an additional component in the state, we can
store the configuration of the simulated automaton in one node on the path from the root to
the current node: we store the depth of this node in the register and the state of the simulated
automaton in the additional component of the state of the simulating automaton. When the
simulation climbs up to this depth again, we know to which state the simulated automaton
should be reverted, regardless of the reversibility assumptions.

Using this feature we can simulate automata whose strongly connected components (SCCs)
are singletons (Fig. 6.2b). Recall that an SCC is a maximal subset X of the state-space such
that every state in X is reachable from every other state in X. If each SCC is a singleton, then a
run may loop in some states it visits, but it never revisits a state it has left. Hence, in each run
there is a bounded number of state changes. The simulating automaton can then represent the
whole run of the simulated automaton over the path from the root to the current node by means
of the list of state changes and depths at which these changes occurred. Automata with only
singleton SCCs capture exactly the class of R-trivial languages. As we shall see, the potential of
register automata is exhausted by the combination of the above simulation method with the full
power of finite automata to simulate a run inside a single SCC. The class of automata that can be
simulated this way is captured by the following definition.

Definition 6.25.
A deterministic automaton is hierarchically almost-reversible, abbreviated as HAR, if every two
states from the same SCC that meet inside this SCC are almost equivalent. A regular language
is HAR if its minimal automaton is HAR.

By design, HAR languages include all almost-reversible languages (Fig. 6.2a), and allR-trivial
languages (Fig. 6.2b), but also the language in Fig. 6.2c which is neither almost-reversible nor
R-trivial. The language in Fig. 6.2d, is not HAR.

As Definition 6.25 is invariant under the complementation of the automaton, we obtain the
following.

Lemma 6.26.
The complement of a HAR language is HAR.

We can state our main characterisation theorem.

Theorem 6.27.
Let L be a regular language. The following are equivalent:

1. QL is a register query,
2. EL is a registerless language,
3. AL is a registerless language,

124 CHAPTER 6. Processing Regular Properties of XML Documents

4. L is hierarchically almost-reversible.

Proof. The rest of the section is devoted to prove (2) implies (4), and (4) implies (1). If we
assume that they are correct, we can prove the remaining implications. (1) implies (2) because
an automaton A realising QL can be easily turned into an automaton A′ recognising EL. A′
behaves like A, but it additionally remembers the previously read symbol; if the previous
symbol was an opening tag, the state is accepting in A, and the current letter is a closing tag,
then A′ moves to an all-accepting sink state. It follows that (2) and (3) are equivalent. Indeed,
we use the equality that (AL)c = E(Lc) and the fact that both stackless and HAR languages are
closed under complement. □

We first give a stackless algorithm for HAR languages ((4) implies (1) in Theorem 6.27).

Lemma 6.28.
If L is a HAR language, then QL is a stackless query.

Proof. Let L be a HAR language and A its minimal automaton. Like before, we construct a
depth-register automaton B that evaluates QL by maintaining a simulation of the run of A on
the word ŵ labelling the path π from the root to the current node. It applies the method used
for R-trivial languages to keep track of the changes of SCCs of A during the simulated run,
and an adaptation of the method for almost-reversible languages to deal with the segments of
the simulated run within a single SCC. After processing a prefix w of the encoding of the input
tree, for each SCC X of A visited during the run on ŵ, except the current one, the automaton B
stores

• the depth of the deepest node on the path π whose label was read in a state from X during
the run on ŵ; and

• some state from X that meets in X with the last state from X visited by A in the run on ŵ.

Additionally, if q is the current state ofA after processing ŵ and Y is the SCC ofA that contains
q, the automaton B stores some state p ∈ Y that meets with q in Y , and p = q after reading each
opening tag. Initially, p is the initial state i of A, and nothing else is stored.

Suppose that B reads an opening tag a and the current depth is d. Because A is HAR,
the states p and q mentioned above are almost equivalent. As A is minimal, it follows from
Lemma 6.7 that p · a = q · a. Consequently, p · a is the next state of A. If p · a ∈ Y , we just replace
p with p · a and proceed to the next tag. If p · a belongs to some SCC Z , Y , we also add Y to
the list of remembered SCCs, with depth d (loaded to some unused register) and state p, and
continue with Z as the current SCC.

Suppose now that B reads a closing tag ā and the current depth d is greater than or equal
to the maximal recorded depth d′. This indicates that the previous state of A also belongs
to Y . We should now revert A to some state q′ ∈ Y such that q′ · a = q, but we do not know
which one. Even worse, we do not have access to q, but only to some state p ∈ Y that meets
with q in Y . Nevertheless, we can maintain the invariant by picking any state p′ ∈ Y such that
p′ · a ∈ Y is almost equivalent to p. Note first that such states p′ exist because q′ is one of them:
q′ · a = q and from the previous case we know that q and p are almost equivalent. To keep B
deterministic we pick the minimal such p′ according to some arbitrarily fixed order on the
states of A. To prove that every p′ is suitable it suffices to show that p′ meets with q′ in Y . We
know that p · u = q · u ∈ Y for some word u. Because p′ · a is almost equivalent to p and A is

6.3. Stackless model 125

minimal, we get p′ ·a ·u = p ·u = q ·u = q′ ·a ·u, and we are done. Hence, B can replace p with p′

and proceed to the next tag.
Finally, suppose B reads a closing tag ā and the current depth is strictly smaller than the

greatest recorded depth d′ . This indicates that the previous state ofA belongs to the SCC X , Y ,
associated with depth d′ . The automatonA should be reverted to the last state q′ from X visited
during the run. The simulation does not have access to q′, but it has the state p′ recorded for
X, and we know that p′ meets with q′ in X. This is sufficient to maintain the invariant: the
automaton B simply replaces p with p′ , removes X from the list of remembered SCCs marking
the register storing the associated depth d′ as unused, and proceeds to the next tag with X as
the current SCC. □

We now prove the inexpressibility direction of Theorem 6.27 ((2) implies (4)). We use
pumping as in Lemma 6.12 and Lemma 6.17, but requires considerably more effort because this
time we need to fool a depth-register automaton. Before we dive into it, we prepare some simple
tools helping to analyse runs of such automata.

For configurations c = (q,d,η) and c′ = (q′ ,d′ ,η′) of a depth-register automaton B we write
c ∼ c′ if q = q′ .

For −∞ ≤ i ≤ j ≤ ∞, we write c ≈i,j c′ if c ∼ c′ and for each register ξ one of the following
conditions holds:

• η′(ξ)− d′ = η(ξ)− d;
• η(ξ)− d < i and η′(ξ)− d′ < i and η(ξ) = η′(ξ);
• η(ξ)− d > j and η′(ξ)− d′ > j.
We let ∥ε∥ = 0 and inductively ∥wa∥ = ∥w∥+ 1 and ∥wā∥ = ∥w∥−1 for all a ∈ A and w ∈ (A∪ Ā)∗.

For nonempty w we also define

⌊w⌋ = min
ε,u⪯w

∥u∥ , ⌈w⌉ = max
ε,u⪯w

∥u∥ ,

where u ⪯ w means that u is a prefix of w. Note that for all w,

⌊w⌋ ≤ ∥w∥ ≤ ⌈w⌉ .

Lemma 6.29.
Suppose that c1 ≈i,j c2. For every word w such that i ≤ ⌊w⌋ ≤ ⌈w⌉ ≤ j, it holds that c1 ·
w ≈i−∥w∥,j−∥w∥ c2 ·w.

Proof. It suffices to show the lemma for the case when w is a single letter; the general claim
follows by straightforward induction on the length of w. Suppose that w = a ∈ A. Then,
⌊w⌋ = ⌈w⌉ = 1. Because c1 ≈i,j c2 and i ≤ 1 ≤ j, it follows the same transition over a will be
taken from c1 and c2. After the transition is taken, the absolute thresholds between the three
kinds of behaviour of registers listed in the definition of ≈ do not change, but because the
current depth increases by one, the relative thresholds have to be adjusted. This gives precisely
c1 · a ≈i−1,j−1 c2 · a. For w = ā the argument is entirely analogous.

□

A word x ∈ (A∪Ā)+ is descending if 1 = ⌊x⌋ ≤ ⌈x⌉ = ∥x∥ and it is ascending if −1 = ⌈x⌉ ≥ ⌊x⌋ = ∥x∥.
Descending words generalise words from A+, and ascending words generalise words from Ā+.

126 CHAPTER 6. Processing Regular Properties of XML Documents

For i, j ∈Z∞ = Z∪ {−∞,∞} we let

[i, j] = {k ∈Z∞
∣∣∣ i ≤ k ≤ j} , (i, j] = {k ∈Z∞

∣∣∣ i < k ≤ j} ,
and analogously for [i, j) and (i, j).

Lemma 6.30.
Let ci = (qi ,di ,ηi) with i ∈ [1;4] be configurations of a depth-register automaton B and let

y,z ∈ (A∪ Ā)+ be descending words such that c1
y
−→ c2

z−→ c3
y
−→ c4. If img(η1) ⊆ (−∞;d1] and

c1 ∼ c3, then img(η4)∩ (d1;d2] = ∅.

Proof. Because y and z are descending, from img(η1) ⊆ (−∞;d1] it follows that img(η3) ⊆
(−∞;d3]. Combining this with c1 ∼ c3, we conclude that from configurations c1 and c3 the
same sequence of transitions will be taken while processing y. But this implies that if a depth
d ∈ (d1;d2] was stored in some register ξ while processing y from c1, the corresponding depth
d′ ∈ (d3;d4] will be stored in ξ while processing y from c3. That is, each depth stored when the
first copy of y was processed, is overwritten when the second copy of y is processed. Because
img(η1) ⊆ (−∞;d1], and both y and z are descending, there is no other way of putting a value
from the segment (d1;d2] into registers.

□

Lemma 6.31.
Let B be a depth-register automaton with k states and ℓ registers, and let n ≥ k · (ℓ + 1). For
every configuration c = (q,d,η) of the automaton B and every descending or ascending word
x ∈ (A∪ Ā)+, if

img(η)∩
[
d +

⌊
x3·n!

⌋
;d +

⌈
x3·n!

⌉]
= ∅ ,

then

1. c · xn! ∼ c · xn! · xn!; and

2. c · xn! · xn! ≈⌊xn!⌋−∥xn!∥,⌈xn!⌉−∥xn!∥ c · xn! · xn! · xn!.

Proof. It is well known that for every deterministic finite automaton A over A∪ Ā with at most
n states, p ·wn! = p ·wn! ·wn! for every state p and every word w. To see why this is the case,
let us analyse the evolution of the state after processing successive copies of w. Already after
processing at most n copies a state will repeat, and because A is deterministic, we will start
looping around a cycle in A. After processing all n! copies we are still on the cycle, of course.
After processing any number of copies that is divisible by the length of the cycle (measured in
the number of w-steps, not single letters), we return to the same state. Because the length of
the cycle is at most n, and n! is divisible by every number between 1 and n, the claim follows.

The lemma is proved in a similar fashion. Suppose x is descending; the argument for
ascending x is entirely analogous. Throughout the run on xn! · xn! · xn! from c, the current depth
stays within

[
d +

⌊
x3·n!

⌋
;d +

⌈
x3·n!

⌉]
. Consequently, comparisons with values from img(η) give

the same result at every step of this run. Moreover, because x is descending, depths stored

6.3. Stackless model 127

i

r pq

s
v

u

w

u
t

1

Figure 6.6: Non-HAR gadget Lemma 6.32.

when processing the ith copy of x are all strictly smaller than every depth that occurs when
processing the jth copy of x for all j > i. Consequently, the behaviour of B when processing the
(i + 1)st copy of x is determined by the state and the set of registers storing values not greater
than the current depth—after processing the ith copy of x. Because the set of registers can only
grow as the successive copies of x are processed, after processing at most k · (ℓ + 1) copies of x a
state-set pair will repeat. Because the sets only grow, all state-pairs in between share the same
set. It follows that when processing subsequent copies of x, this sequence of state-pairs will
repeat in a cyclic fashion. Because the length of this sequence is at most k · (ℓ+ 1), it follows like
before that the state-set pairs corresponding to c · xn! and c · xn! · xn! coincide. This implies item
(1) of the lemma. In configuration c · xn! · xn! some registers store the same value from(

−∞;d +
⌈
xn!

⌉]
∪

(
d +

⌈
x3·n!

⌉
;∞

)
that they stored in configuration c · xn!, and into the remaining registers some values from(

d +
⌈
xn!

⌉
;d +

⌈
x2·n!

⌉]
were loaded when the second copy of xn! was being processed. Because the state-set pairs
corresponding to c ·xn! and c ·xn! ·xn! coincide, processing the third copy of xn! will load into the
same registers the corresponding (that is, shifted by ∥xn!∥) values, and no other load operations
will be performed. This implies item (2) of the lemma.

□

Lemma 6.32.
For each regular language L, if EL is a stackless tree language, then L is HAR.

Proof. Again, we prove the contrapositive. Suppose L ⊆ A∗ is not HAR. Then, its minimal
automaton A admits states p, q, and r in the same SCC Y such that for some word u and some
non-empty word t, we have r = p · u = q · u and p · t is accepting and q · t is non-accepting
(in particular, p , q). Then, there exist v and w such that r · v = p and r ·w = q. Finally, by
minimality, all states are reachable from the initial state, so there exists a word s such that
i · s = r. Because Y contains two different states, it is a non-trivial SCC. Consequently, for each
state p′ ∈ Y there exists a nonempty looping word; that is, a word w′ , ε such that p′ ·w′ = p′.
By appending suitable looping words if necessary, we can assume that the words s, u, v, w
are nonempty as well. Additionally, it will be convenient to assume that |u| ≥ |t|; this can be
ensured by appending |t| copies of the appropriate looping word to u. The resulting fragment

128 CHAPTER 6. Processing Regular Properties of XML Documents

s
c0 c13

(wu(vu)2·n!)n!

w

t

(1)

u(vu)2·n!

(wu(vu)2·n!)n!

wt

u(vu)2·n!

(wu(vu)2·n!)n!

wu

...

(wu(vu)2·n!)n!

w

t

(n! + 1)

(uv)2·n!

u

(wu(vu)2·n!)n!

wt

(uv)2·n!

u

(wu(vu)2·n!)n!

wu

c1

c2

c3

c4

c5

c7

c12

c11

...

(wu(vu)2·n!)n!

w

t

(2 · n! + 1)

u(vu)2·n!

(wu(vu)2·n!)n!

wt

u(vu)2·n!

(wu(vu)2·n!)n!

wu

c8

c9

wt

c10

s
c0 c′′13

(wu(vu)2·n!)n!

w

tu(vu)2·n!

(wu(vu)2·n!)n!

wt (1)

u(vu)2·n!

(wu(vu)2·n!)n!

wu

...

(wu(vu)2·n!)n!

w

(uv)n!

t

(n! + 1)

(uv)2·n!

u

(wu(vu)2·n!)n!

wt

(uv)2·n!

u

(wu(vu)2·n!)n!

wu

c1

c2

c′′12c3

c′4

c′5

c′7

c′12

c′11

...

(wu(vu)2·n!)n!

w

t

(2 · n! + 1)

u(vu)2·n!

(wu(vu)2·n!)n!

wt

u(vu)2·n!

(wu(vu)2·n!)n!

wu

c′8

c′9

wt

c′10

1

Figure 6.7: Fooling trees in Lemma 6.32.

6.3. Stackless model 129

of the automaton A is shown in the top left corner of Fig. 6.6. We have

s(wu + vu)∗vt ⊆ L , s(wu + vu)∗wt ⊆ Lc .

Consider a depth-register automaton B over A ∪ A with k states and ℓ registers. Let
n = k · (ℓ + 1). We shall construct a fooling pair of trees by unravelling the fooling gadget.

The trees are shown in Fig. 6.7. The original tree R, is build from: (i) a tree R0 consisting of
a single branch labelled by the word s, (ii) trees R1, . . . ,R2·n!+1 that are isomorphic copies of the
same tree, and (iii) a tree R2·n!+2 consisting of a single branch labelled by the word wt. Each
branch of R is labelled by a word from s(wu + vu)∗wt ⊆ complL, which means that R < EL. The
pumped tree R′ is obtained by inserting an additional segment labelled by (uv)n! in Rn!+1, just
before the branching; we will write R′n!+1 for thus modified Rn!+1. The modification introduces a
branch labelled by a word from s(wu+vu)∗vt ⊆ L, which means that R′ ∈ EL. We will show that
the automaton B cannot distinguish ⟨R⟩ from ⟨R′⟩, by analysing the respective runs in parallel.
The crucial moments of the analysis will be configurations ci = (qi ,di ,ηi), c′i = (q′i ,d

′
i ,η
′
i), and

c′′i = (q′′i ,d
′′
i ,η

′′
i), depicted (with the exception of c6) in brown in Fig. 6.7: configurations to the

left of edges are visited when going down and those to the right when going up.
Let x be the prefix of ⟨R1⟩ ending at the opening tag of the rightmost leaf of R1. Because

|t| ≤ |u|, the rightmost branch of R1 is at least as long as both other branches, which implies that
x is descending. Clearly, so is y = wu(vu)2·n! ∈ A+. Consider the following initial segments of
the runs of B over ⟨R⟩ and ⟨R′⟩:

c0
sxn!

−−−→ c1
yn!

−−→ c2
w−→ c3

(uv)2·n!

−−−−−−→ c4
u−→ c5

yn!−1

−−−−→ c6
y
−→ c7 ,

c0
sxn!

−−−→ c1
yn!

−−→ c2
w−→ c3

(uv)3·n!

−−−−−−→ c′4
u−→ c′5

yn!−1

−−−−→ c6
y
−→ c′7 .

Let δ = |(uv)n!|. As all words over the arrows are descending, we have

img(ηi) ⊆ [−∞;di] , img(η′j) ⊆ [−∞;d′j] , d′j = dj + δ (6.2)

for all i ∈ [0;7] and j ∈ [4;7]. Condition (6.2) allows us to apply Lemma 6.31 to configuration c3
and the descending word uv, and conclude that c4 ≈1−δ,0 c

′
4. By (6.2), this can be strengthened

to c4 ≈1−δ,∞ c
′
4. By Lemma 6.29, we get

c7 ≈1−∥(uv)n!u·yn!∥,∞ c
′
7 . (6.3)

Applying Lemma 6.31 to c2 and y, we get c2 ∼ c6. Hence, we can apply Lemma 6.30 to
configurations c2, c5, c6, c7 and descending words y and yn!−1. Combining the result with (6.3),
we get

img(η7)∩
(
d2;d5

]
= ∅ , img(η′7)∩

(
d2;d′5

]
= ∅ . (6.4)

Consequently, from (6.3) we can also conclude

c7 ≈1−∥yn!+1∥,∞ c7 . (6.5)

130 CHAPTER 6. Processing Regular Properties of XML Documents

Let y′ = wu(vu)3·n! and take x0 such that y2·n!+1 · x0 = x. Consider

c0
sxn!

−−−→ c1
yn!·y·yn!

−−−−−−−→ c7
x0−−→ c8

xn!−1

−−−−→ c9
x−→ c10 ,

c0
sxn!

−−−→ c1
yn!·y′ ·yn!

−−−−−−−−→ c′7
x0−−→ c′8

xn!−1

−−−−→ c′9
x−→ c′10 .

Note that condition (6.2) holds for all i, j ∈ [8;10]. From (6.5) via Lemma 6.29 we get

c10 ≈1−∥yn!+1wuxn!∥,∞ c
′
10 . (6.6)

Applying Lemma 6.31 to configuration c0 ·s and the descending word x, we get c1 ∼ c9. Applying
Lemma 6.30 to configurations c1, c8, c9, c10 and the descending words x and xn!, and combining
the result with (6.6), we get

img(η10)∩ (d1;d8] = ∅ , img(η′10)∩ (d1;d′8] = ∅ . (6.7)

Hence, we can strengthen (6.6) to

c10 ≈1−∥xn!+1∥,∞ c
′
10 . (6.8)

Let x̄ = ūw̄ȳ2·n!+1; that is, xx̄ = ⟨R1⟩. Consider

c10
wtt̄w̄·x̄n!·ūw̄ȳn!·ū
−−−−−−−−−−−−−−−→ c11

(v̄ū)2·n!

−−−−−−→ c12
w̄·ȳn!·x̄n!·s̄
−−−−−−−−−→ c13 ,

c′10
wtt̄w̄·x̄n!·ūw̄ȳn!·ū
−−−−−−−−−−−−−−−→ c′11

(v̄ū)2·n!

−−−−−−→ c′12
(v̄ū)n!

−−−−−→ c′′12
w̄·ȳn!·x̄n!·s̄
−−−−−−−−−→ c′′13 .

We have d′i = di + δ for i ∈ [10;12] and d′′i = di for i ∈ [12;13]. By Lemma 6.29, we have
c12 ≈1−∥w∥,∞ c

′
12. As from (6.7) it follows that img(η12)∩ (d1;d12) = img(η′12)∩ (d1;d′12) = ∅, we

also have
c12 ≈0,∞ c

′
12 . (6.9)

Applying Lemma 6.31 to configuration c′11 and the ascending word v̄ū, we get c′12 ≈0,δ−1 c
′′
12. In

combination with (6.9) this implies c12 ≈0,δ−1 c
′′
12. Because d12 = d′′12, it follows that c12 ≈−∞,δ−1

c′′12. By Lemma 6.29, this implies c13 ∼ c′′13. □

6.4 Term encoding

An alternative way to serialize tree-structured data, used for instance in JSON, is the term
encoding, in which the information about the label is included only in opening tags. Streaming
processing under this encoding is harder, but analyzing it is easier. An effective characterization
of regular tree languages that are registerless under the term encoding is given in [9].

A tree language L over A is term-registerless (resp. term-stackless) if there exists a finite
automaton (resp. depth-register automaton) over A∪ {◁} that accepts all words from [L] and
rejects all words from [Lc]. A unary query Q is term-registerless (resp. term-stackless) if there
exists a finite automaton (resp. depth-register automaton) over A∪ {◁} that pre-selects nodes in
Q(T) when running over [T].

Our treatment can be easily adapted to the term encoding by adjusting the definition of when
two states meet: we say that states p and q blindly meet in state r if there exist words u1,u2 ∈ A∗
such that |u1| = |u2| and p ·u1 = q ·u2 = r. By replacing ‘meet’ with ‘blindly meet’ in Definitions 6.8,
6.13 and 6.25, we get the definitions of the syntactic classes of blindly almost-reversible, blindly

6.4. Term encoding 131

HAR, blindly A-flat, and blindly E-flat word languages. All the main theorems then hold for the
term encoding with all syntactic classes of word languages replaced by their blind analogues.

Nevertheless, ‘blind’ classes are much more restricted than their originals: all R-trivial
languages are blindly HAR, but the possibilities of backtracking inside an SCC are very limited.
For example, the minimal automaton shown in Fig. 6.1 is reversible, but not blindly-HAR; this
means that the language (b∗ab∗ab∗)∗ this automaton recognizes is registerless under the markup
encoding, but not even stackless under the term encoding. This is the cost of succinctness.

Theorem 6.33.
Let L be a regular language.

1. EL is a term-registerless tree language iff L is blindly E-flat.

2. AL is a term-registerless tree language iff L is blindly A-flat.

3. The following conditions are equivalent:

(a) QL is a term-registerless unary query;

(b) EL and AL are term-registerless tree languages;

(c) L is blindly E-flat and blindly A-flat;

(d) L is blindly almost-reversible.

Proof. The argument is fully analogous to that in Theorem 6.10 and Theorem 6.15, with
Lemma 6.16,Lemma 6.12, Lemma 6.17, and Lemma 6.11. replaced by their analogues for
term-registerless, blindly E-flat, blindly A-flat, and blindly almost-reversible languages.

The analogue of Lemma 6.11 states that if L is a blindly almost-reversible language, then
QL is a term-registerless query. The proof is almost identical, except that when the closing tag
◁ is read in state p, we pick any state p′ such that p′ · a is almost equivalent to p for some a ∈ A;
because L is blindly almost-reversible, the original argument now shows also that the choice of
a does not matter.

The analogue of Lemma 6.14 states that a regular language is blindly A-flat iff its comple-
ment is blindly E-flat, and that it is blindly almost-reversible iff it is both blindly A-flat and
blindly E-flat; it is proved just like the original.

The analogue of Lemma 6.16 states that if L is blindly E-flat, then EL is term-registerless.
The proof is an adaptation of the original one to the blind setting. The states of the simu-
lating finite automaton, the simulation invariant, the transitions over opening tags, and the
transformation into an automaton recognizing EL are entirely analogous, with ‘meet’ replaced
everywhere with ‘blindly meet’; in particular, we keep the labels a1, . . . , aℓ in the synopsis.
However, the behaviour of the simulating automaton over the closing tag needs to be adjusted
so that it does not rely on the label of the current node. We begin by dropping all references to
the current label in the conditions defining Cases A–D, which gives

Case A’: pℓ ,qℓ ∈ X but either rℓ < {pℓ ,qℓ} or pℓ−1 is not internal;

Case B’: pℓ ,qℓ ∈ X, rℓ ∈ {pℓ ,qℓ}, and pℓ−1 is internal;

Case C’: qℓ ∈ X, pℓ < X, and rℓ < {pℓ ,qℓ};

132 CHAPTER 6. Processing Regular Properties of XML Documents

Case D’: qℓ ∈ X, pℓ < X, and rℓ ∈ {pℓ ,qℓ}.

In each of these cases the simulating automaton needs to consider all possible values of the
current label. That is, in Cases A’ and B’, the set P is now defined as

P =
{
p ∈ X

∣∣∣ p · a ∈ {pℓ ,qℓ}, a ∈ A}
,

and in Case C’ we look at p · a1 = pℓ and q · a2 = qℓ for arbitrary a1, a2 ∈ A. Apart from these
differences, the arguments in Cases A’–C’ are analogous to the original ones. Let us have a closer
look at Case D’. Like before we have pℓ = pℓ−1 = qℓ−1 and rℓ = qℓ . Consequently, pℓ · aℓ = qℓ and,
because pℓ and qℓ are almost equivalent, qℓ · aℓ = qℓ. Suppose that p · a = pℓ for some internal
state p and some a ∈ A. Then, we have p · aaℓ = qℓ · aℓaℓ = qℓ; that is, p blindly meets with qℓ in
qℓ. Since qℓ is rejective, it follows from blind E-flatness that p and qℓ are almost equivalent.
Consequently, qℓ · a = p · a = pℓ. Because we also have that pℓ · aℓ = qℓ, it follows that pℓ ∈ X
which is a contradiction. Hence, such p cannot exist. One then argues, like in the markup case,
that there is no q ∈ X \ {qℓ} for which there exists a ∈ A such that q · a = qℓ, and that letting the
simulating automaton continue with the same synopsis preserves the invariant.

Finally, the analogue of Lemma 6.12 states that for each regular language L, if EL is term-
registerless, then L is blindly E-flat. This time there are important differences in the proof; we
sketch it below.

We show that if L is not blindly E-flat, then [EL] cannot be separated from [(EL)c] by a
finite automaton. Suppose that the minimal automaton A of L ⊆ A∗ is not E-flat. Let i be
the initial state of A. Then, there exist words s, t,u1,u2 ∈ A+, x ∈ A∗ and states p, q such that
|u1| = |u2|, i · s = p, p ·u1 = q ·u2 = q, q · x is rejecting, and p · t is accepting iff q · t is rejecting. It
follows that for each k > 0, su1(u2)kx ∈ Lc, and st ∈ L iff s(u1)(u2)kt ∈ Lc. Unlike for the markup
encoding, the construction of the fooling trees depends on whether st ∈ L or st ∈ Lc

Suppose first that st ∈ Lc. Then, the trees S, S ′ used in Lemma 6.12 should be replaced with
the ones in Fig. 6.8a. We have S < EL and S ′ ∈ EL. Note that we have no control on whether
the rightmost branch of S ′ is labelled by a word from L or not, but it is irrelevant, because we
know that the middle branch is. The term encodings of S and S ′ satisfy the following:

[S] = s ·u1(u2)n! xx̄ (ū2)n!ū1 tt̄ u1(u2)n! xx̄ (ū2)n!ū1 s̄ ,

[S ′] = su1(u2)2·n! xx̄ (ū2)n!ū2 tt̄ u1(u2)n! xx̄ (ū2)n!ū1(ū2)n!−1ū1 s̄

= su1(u2)2·n! xx̄ (ū2)n!ū1 tt̄ u1(u2)n! xx̄ (ū2)n!ū2(ū2)n!−1ū1 s̄

= su1(u2)2·n! xx̄ (ū2)n!ū1 tt̄ u1(u2)n! xx̄ (ū2)2·n!ū1 s̄ ,

because |u1| = |u2| implies ū1 = ū2. The rest of the proof is identical.
If st ∈ L, in S we replace u1 on the rightmost branch with u2, and we modify S ′ accordingly.

It then holds that S ∈ EL regardless of whether su2(u2)n!x belongs to L or not, and S ′ < EL; the
proof again continues like in Lemma 6.12. □

Theorem 6.34.
For each regular language L, the following conditions are equivalent:

• QL is a term-stackless unary query;
• EL is a term-stackless tree language;
• AL is a term-stackless tree language;

6.5. Algebraic characterisations 133

s

tu1(u2)n!

x

u1(u2)n!

x

(a) Tree S.

s

u1(u2)n!−1

tu2(u2)n!

x

u1(u2)n!

x

(b) Tree S ′ .

Figure 6.8: Blind variants of fooling trees in Lemma 6.12.

• L is blindly HAR.

Proof. The argument is fully analogous to that in Theorem 6.27, with Lemmas 6.26, 6.28
and 6.32 replaced by their analogues for term-stackless and blindly HAR languages.

The analogue of Lemma 6.26 states that the class of blindly HAR languages is closed under
complement, which is immediate from the definition just like for HAR languages.

The analogue of Lemma 6.28 states that if L blindly HAR then QL is term-stackless. The
proof is analogous, with the only modification being what we did with Lemma 6.11 in the proof
of Theorem 6.33: when the closing tag ◁ is read in state p and the current depth is greater than
or equal to the maximal stored depth, we pick any state p′ such that p′ · a is almost equivalent
to p for some a ∈ A. Because L is blindly HAR, the original argument now shows also that the
choice of a does not matter.

Finally, the analogue of Lemma 6.32 states that for each regular language L, if EL is a
term-stackless tree language then L is blindly HAR. The proof is obtained by adjusting the
proof of Lemma 6.32 just like the proof of Lemma 6.12 was adjusted in Theorem 6.33. This
time there is only one case because we know that s(wu1 + vu2)∗wt ⊆ Lc and s(wu1 + vu2)∗vt ⊆ L,
and not the other way around. In the tree R shown in Fig. 6.7, the copies of u immediately
following copies of w should be replaced by u1 and those immediately following v should be
replaced by u2. From there, the proof continues like before. □

6.5 Algebraic characterisations

The definitions of almost-reversible, E-flat, A-flat and hierarchically almost-reversible are combi-
natorial descriptions of automata. However, the classes of languages they described are closed
under many operations, giving them the structure of different types of varieties. This time, we
stick with stamps instead of semigroups as algebraic objects for ne-varieties, as the descriptions
are easier in this setting.

Theorem 6.35.
The following classes are varieties:

• the class of almost-reversible languages is an ne-variety,
• the class of E-flat languages is a positive ne-variety,
• the class of A-flat languages is a positive ne-variety,

134 CHAPTER 6. Processing Regular Properties of XML Documents

• the class of hierarchically almost-reversible languages is an ne-variety.
• the class of blindly almost-reversible languages is an lm-variety,
• the class of blindly E-flat languages is a positive lm-variety,
• the class of blindly A-flat languages is a positive lm-variety,
• the class of blindly hierarchically almost-reversible languages is an lm-variety.

Proof. All items will be immediate after proving their equivalence with algebraic classes that
will form different varieties of stamps. Note that the class of (blindly or not) E-flat and A-flat
are not closed under complementation (with, for example, the co-finite and finite languages),
hence the need for ordered structures.

However, we give the proof for the closure under non-erasing inverse morphisms of almost-
reversible languages to stress that they do not correspond to a variety of monoids. Let L be a
regular language over A recognised by an almost-reversible A, and µ : B∗→ A∗ a non-erasing
morphism. It is standard that the language L′ = µ−1(L) is recognised by the automaton A′
defined as A with the different transition function δ′a = δµ(a). We will show that A′ is almost-
reversible. Let p and q be two states and u ∈ B∗ such that p ·u = q ·u. Thus p and q also meet
in the automaton A, with the word µ(u). Therefore p and q are almost-equivalent in A. Let
v ∈ B+, p · v and q · v reach respectively the states that correspond in A to p · µ(v) and q · µ(v).
Here we use the non-erasing assumption on µ: µ(v) is non-empty and then p ·µ(v) = p · v and
q ·µ(v) = q · v are equivalent. Therefore p and q are almost equivalent in A′ .

For blind classes, we moreover need to preserve the length of words that make two states
blindly meet, hence the closure only stands for length-multiplying morphisms. □

6.5.1 Checking first and last letter

A salient ability of our classes is that they can check easily the first and last letter of a word
(corresponding to the root and leaves of the corresponding tree). This is captured by the idea
of almost-V stamps, for V any kind of variety. It was first introduced by Grosshans, McKenzie
and Segoufin in their study of programs over monoids [52]. It has later been used again by
Grosshans in [51] in a general study of the join of varieties with LI. This operation is the
algebraic counterpart of freely checking finite prefixes and suffixes of words. We adapt this
operation to catch the ability of checking only the first and last letters of a word. Additionally,
note that the terminology used therein is “essentially-V” stamps. We chose to change it to fit
with our notations, and to avoid a conflict with the already existing class EV of monoids whose
idempotents generate a monoid in V.

Definition 6.36.
Let V be a positive lm-variety of stamps. A stamp µ : A∗→M is said to be almost-V whenever
there exists a stamp η : A∗→N in V such that for every u,v ∈ A∗ we have

η(u) ≤ η(v)⇒ (∀a,b ∈ A, µ(aub) ≤ µ(avb)).

The class of all such stamps is denoted by AV. It is a (positive) ne-variety of stamps when V is
a (positive) ne-variety of stamps (even if it is a variety of monoids), and a (positive) lm-variety of
stamps whenever V is (see [52]). It naturally has a description in term of quotient of languages.

6.5. Algebraic characterisations 135

Lemma 6.37.
Let V be a positive lm-variety of stamps and let L be a regular language. We have that L is in
AV if and only if ∀a,b ∈ A, a−1Lb−1 is in V.

Proof. Throughout the proof, let µ be the syntactic stamp of L.
Firstly, assume that the condition on the quotients is satisfied. Consider the collection of

stamps in V that recognise the languages of the form a−1Lb−1, and write η for their product.
Since a variety is stable by product, η is in V. Let u,v ∈ A∗ such that η(u) ≤ η(v) and a,b ∈ A. We
want to show that aub and avb are ordered for the syntactic order of L. Let x,y ∈ A∗, we have to
prove xauby ∈ L⇒ xavby ∈ L. Let c and d be the first and last letter of both words: there exist x′

and y′ in A∗ such that xa = cx′ and by = y′d. The assumption on η gives that η(x′uy′) ≤ η(x′vy′).
Because η recognises c−1Ld−1, we know that x′uy′ ∈ c−1Ld−1 ⇒ x′vy′ ∈ c−1Ld−1. This is
equivalent to cx′uy′d ∈ L⇒ cx′vy′d ∈ L. Hence aub ≤L avb and µ(aub) ≤ µ(avb). This is exactly
the definition of µ being almost-V.

Secondly, assume that L is in AV. Let η : A∗→M in V, given by the condition of almost-V.
Let a,b be two letters. Let P be the upset of η(a−1Lb−1), we will show that η−1(P) = a−1Lb−1 to
deduce that a−1Lb−1 is recognised by M. The right to left inclusion is true, as η−1 ◦ η is always
increasing for inclusion. Let u ∈ η−1(P), we have directly that there exists v ∈ a−1Lb−1 such that
η(u) ≥ η(v). By definition of almost-V, we have that µ(aub) ≥ µ(avb). We know that avb ∈ L and
µ recognises L, therefore aub ∈ L. Hence u ∈ a−1Lb−1. □

We also need a generic way to go from automata definitions based on almost-equivalence, to
better-known ones that only use equivalence (that is to say equality whenever we have a minimal
automaton).

Let P be a property on automata that takes two states p and q and return a Boolean. We will
exclusively consider properties among the following, called meet properties:

• Pm: p and q meet.
• P +

m : p and q meet in q and q is rejective.
• P −m: p and q meet in q and q is acceptive.
• Pms: p and q are in a same SCC and meet in this SCC.
• Pbm: p and q blindly meet.
• P +

m : p and q blindly meet in q and q is rejective.
• P −m: p and q blindly meet in q and q is acceptive.
• Pbms: p and q are in a same SCC blindly and meet in this SCC.

An automaton is P -collapsing if every pair of states p,q that has the property P is such that
p and q are equivalent. It is P -almost-collapsing if every pair of internal states p,q that has the
property P is such that p and q are almost-equivalent. The eight classes under study in the
complexity of streaming tree (the ones in Theorem 6.35) correspond to the eight classes of
P -almost-collapsing automata introduced. We extend these definitions to languages by asking
that its minimal automaton is P -collapsing or P -almost-collapsing.

Lemma 6.38.
Let L be a regular language and P be a meet property. Then L is P -almost-collapsing if and
only if for every a,b ∈ A, a−1Lb−1 is P -collapsing.

136 CHAPTER 6. Processing Regular Properties of XML Documents

Proof. First, assume that L has a P -almost-collapsing minimal automaton A. Let a,b ∈ A. The
language a−1Lb−1 is recognised by the automaton A′ defined as A with a different initial and
final states. The new initial state is i′ = i · a, and the new final states are the state q such that
q · b ∈ F. We denote this last set F′. Moreover, we trim A′ by removing states that cannot be
reached from the initial state. It means in particular that every state in A′ is internal inA. Take
two states p and q of A′ such that P (p,q) stands and a letter c such that p · c = q · c. It is clear
that P is also satisfied for p and q seen as states of A. Thus both p and q are internal and satisfy
P in A and are therefore almost-equivalent in A. To show that p and q are equivalent, we have
to see that both or none of them are final. This is indeed the case: by minimality of A and the
almost-equivalence of p and q we have p · b = q · b. Thus for both p and q, they are final in A′ if
and only if p · b is final in A. Thus a−1Lb−1 is a P -collapsing language.

Second, assume that the conditions on quotients is fulfilled. For a,b ∈ A, let Aa,b be a
P -collapsing automaton that computes a−1Lb−1. By doing a product of them, we can assume
that they all have the same states Q and transition function δ, but with different final states.
Indeed a product of P -collapsing automata is itself P -collapsing. We construct A to be the
union of all of these automata with a fresh initial state i, and a bunch of states ja for a ∈ A.
We denote the other states pa,b for p ∈ Q and a,b ∈ A. In particular, ia,b is the initial state of

Aa,b. For each letter a,b, we add a transition i
a−→ ja, and a transition ja

b−→ (ia,b · b). The other

transitions are pa,b
c−→ qa,c where q = δ(p). The final states are i iff ε ∈ L; ja iff a ∈ L; and pa,b iff

δ−1
b (p) is final in Aa,b. It is clear that A recognises L.

It remains to see that A is P -almost-collapsing. Two important properties of this automaton
are:

i) The image of any pa,b and qa,c, with p and q equivalent, under the transition function for
any letter is two equivalent states, hence they are almost-equivalent.

ii) If pa,b and qa,c have the property P , then p and q have the property P in Aa,b, for any
possibility for P .

Consider two internal nodes that meet. We can make several other observations: the only
non-internal node is i; two distinct nodes ja and jb never have P ; and two nodes pa,b and qc,d
with a , c never have P . Hence there are two cases to consider.

• The nodes pa,b and qa,c have P . This gives that p and q have P in Aa,b thanks to ii), and
are then equivalent. Then by i) they are almost-equivalent.

• The nodes pa,b and ja have P . The same reasoning stands with the definition of the
outgoing transitions from ja.

□

Therefore, to characterise the classes of interest, we apply both Lemma 6.37 and Lemma 6.38.
All is left to do is algebraically characterise the classes of P -collapsing languages. It alleviates the
problem of dealing with the ability to check freely the first and last letters. Plus, these classes
are already known in some cases.

Remark 6.39.
Similar results could be obtained for more than one letter, and for only checking first or last
letters.

6.5. Algebraic characterisations 137

0 1

2 3 4

a

a

b
c

1

(a) −-reversible automaton for L

0

1

2

3

b

a

c

c

1

(b) Minimal automaton of L

Figure 6.9: Automata recognising L = {a,ab,ac}.

6.5.2 Equivalences

Almost-reversible languages. We first tackle the class of regular languages L such that QL
is registerless. The class of almost-reversible languages is syntactically the same as the class of
Pm-almost-collapsing languages. By Lemma 6.38, it is equivalent to asking that for every letter
a,b, the quotients a−1Lb−1 are all Pm-collapsing. A minimal Pm-collapsing automaton is such
that no two distinct states meet. This amounts to requiring that the transition functions are
injective (and therefore bijective). These automata with such transitions are well known.

Fact 6.40 (Folklore).
Let L be a regular language and M its syntactic monoid. Then L is Pm-collapsing iffM is a
group.

Recall that G is the variety of monoids that are groups. Using Lemma 6.37, we have that L is
almost-reversible if and only if its syntactic monoid is in AG. For the other equivalences, we will
only give the characterisation of P -collapsing automata, without refering to Lemma 6.37. The
results are summarised in Theorem 6.45.

E-flat and A-flat languages. We then tackle the class of regular languages L such that EL (resp.
AL) is registerless. This time, we consider the meet properties P +

m and P −m. An automaton is
+-reversible (resp. −-reversible) if after removing all accepting (resp. rejecting) sink states all the
(partial) transition functions are injective. This notion has been studied by Pin [96]. Let G+ be
the positive variety of all ordered monoids whose idempotents commute and such that

∀e ∈M idempotent , e ≥ 1.

The positive variety G− is defined similarly with e ≤ 1. Pin showed that a language is recognised
by a +-reversible (resp. −-reversible) automaton if and only if its syntactic ordered monoid
is in G+ (resp. G−). Note that this is not equivalent to having its minimal automaton that is
+-reversible (resp. −-reversible). For instance, there is the example of L = {a,ab,ac} in [96]. A
−-reversible automaton recognising L and its minimal automaton are given in Fig. 6.9. The
rejecting sink state is not drawn. Remark that the minimal automaton is not −-reversible.

Fact 6.41.
Let L be a regular language and M its syntactic ordered monoid. We have the following

138 CHAPTER 6. Processing Regular Properties of XML Documents

equivalences:

• L is P +
m-collapsing iffM is in G+.

• L is P −m-collapsing iffM is in G−.

Proof. We prove the claim for P +
m-collapsing automata. First, assume that the minimal automa-

ton A of L is P +
m-collapsing.

• Let x,y be two words such that δx and δy are idempotents, and p a state. This implies that
(p ·x) ·x = p ·x and (p · y) · y = p · y. If p ·x and p · y are the sink states, then p ·xy = p · yx. If
only p · x is the accepting sink state, then p · y and p meet in p · y and therefore p = p · y
by the collapsing property. So p · yx = p · x = p · xy. Last, if both are not the sink state
then with the same reasoning we have that p · xy = p = p · yx. So δxδy = δyδx and the
idempotents of M commute.

• Let e,z be two words such that δe is idempotent. Let p be a state such that p · z ∈ F. If p · e
is the accepting sink state then p · e · z is in F as well. If not, then p · e = p and therefore
p · e · z = p · z is in F. So δe ≥ δε, and 1 is smaller than every idempotent in M.

So M satisfies all the equations of G+.
Second, assume that M is in G+. This means that L is recognised by an automaton A which

is +-reversible. Let p,q be two rejective states such that p and q meet in q. With the facts that
q is rejective and that the partial transition function in A without the accepting sink states
is injective, we have that p and q are equivalent. They will therefore be merged during the
minimisation. Hence the minimal automaton of L is P +

m-collapsing. □

Hierarchically almost-reversible languages. We continue our algebraic investigation with the
study of regular languages L such that QL (resp. AL, EL) is stackless. The meet property under
consideration is Pms. The class of Pms-collapsing automata is exactly the class of automata whose
transition (partial) functions restricted to any SCC are injective.

We denote by ER the class of monoids such that their idempotents generate an R-trivial
monoid. It is defined by the equations (see Exercice 5.2.8 in [2]): for any two idempotents e and
f we have that

(ef)ωe = (ef)ω.

Fact 6.42.
Let L be a regular language and M be its syntactic monoid. Then L is Pms-collapsing iffM is
in ER.

Proof. First, assume that A, the minimal automaton of L, is not Pms-collapsing. Then there
exists two distinct states p and q that meet in their SCC. This means there are three words
u, x and y, and a state r such that p · u = q · u = r and r · x = p and r · y = q. We consider the
idempotent in the syntactic monoid: e = (δuδx)ω and f = (δuδy)ω. Their key properties is that e
maps both p and q to p, and f maps both p and q to q. This implies that (ef)ωe maps p to p and
that (ef)ω maps p to q. Hence (ef)ωe , (ef)ω, from which M < ER follows.

Second, assume that A is Pms-collapsing. Let e and f be two idempotents of M, with δx and
δy the corresponding transition functions. Let p be a state ofA. Consider the sequence of states
(δxδy)i(p). By the pigeonhole principle, there are i and j such that (δxδy)i(p) = (δxδy)j(p) = p0.

6.5. Algebraic characterisations 139

We give a name to all states in between:

p0
x−→ q0

y
−→ p1

x−→ ·· · x−→ qj−i−1
y
−→ pj−i = p0.

Of course, all of those states are in the same SCC. However, δx is idempotent therefore for any
k, δx(qk) = δ2

x(pk) = δx(pk) = qk . We obtain δy(pk) = pk as well. We can reach qk with x from pk
and qk , thus by the injectivity of the transition functions in a SCC: pk = qk . We obtain qk−1 = pk
as well. In the end, we have the collapse p0 = q0 = p1 = · · · = qj−i−1. Hence, (ef)ω maps p to
p0 and (ef)ωe maps p to p0 too. This stands for all states p, so (ef)ω and (ef)ωe are the same
functions. We conclude that A satisfies the equations of ER. □

Blindly almost-reversible languages. Next in line is the study of languages L such that QL is
term-registerless. The meet property is Pbm. Recall that I is the trivial variety consisting only of
the monoid of size 1, and hence QI is the variety of stamps whose stable monoid is trivial.

Fact 6.43.
Let L be a regular language and µ be its syntactic stamp. Then L is blindly reversible if and
only if µ is in QI.

Proof. Let A be the minimal automaton of L. Let s be the stability index of µ. It follows from
the definition of the operator Q that µ is in QI iff for all word x of size s, δx is the identity
function.

First, assume that A is Pbm-collapsing. Let x be a word of size s and p a state. Let q = p · x.
By the definition of the stable monoid, there exist a word y of size s such that δx2 = δy . We have
p · y = p · x · x = q · x, and thus p and q blindly meet. Then, by blind reversibility and minimality
of A, p = q. Thus p · x = p, and δx is the identity. We conclude that µ ∈QI.

Second, assume that A is not Pbm-collapsing. It means that there exists two distinct states
p,q and two words x,y of the same length such that p · x = q · y. By adding any same suffix after
x and y we can assume that x and y are of size s. Moreover, at least one of δx or δy is not the
identity function. Hence the stable monoid of µ is not trivial, and µ <QI. □

Blindly E-flat and A-flat. The study of regular languages L such that EL (resp. AL) is term-
registerless is more complicated. Understanding what are blindly E-flat and A-flat languages
requires to understand partial automata that have their transition functions globally injective, in
the spirit of the work of Pin. This will not be done in this work.

Blindly hierarchically almost-reversible languages. Last, we go on with regular languages L
such that QL (resp. AL, EL) is term-stackless. The meet property is Pbms. We recall that R is the
variety of R-trivial monoids and is defined by the equations (xy)ωx = (xy)ω.

Fact 6.44.
Let L be a regular language and µ be its syntactic stamp. Then L is Pbms-collapsing if and only
if µ is in QR.

140 CHAPTER 6. Processing Regular Properties of XML Documents

Proof. Let A be the minimal automaton of L, s be the stability index of µ and Ms the stable
monoid of µ.

First assume that A is Pbms-collapsing. Let x and y be two words of size s and p be a state.
We consider the sequence of states p,p · xy,p · (xy)2, · · ·. By the pigeonhole principle, there are
two indices i and j such that p · (xy)i = p · (xy)j . We give a name to all states in between:

p0
x−→ q0

y
−→ p1

x−→ ·· · x−→ qj−i−1
y
−→ pj−i = p0.

All of those states are in the same SCC. Let k be an integer, (xy)j−i is a word of size (j − i)s and
therefore there exists some z of size s with the same transition function. Hence pk · z = pk and
thus qk−1 and pk blindly meet and are in the same SCC: they are equal by the Pbms-collapsing
property. With the same argument we have that qk = qk−1. So p0 = q0 = . . . = qj−i−1. In the end,
(xy)ω and (xy)ωx both map p to p0. So (xy)ωx and (xy)ω define the same functions, and Ms
satisfies the equations of R.

Second, assume that A is not Pbms-collapsing. Then there exist three states in the same SCC
p , q and r and two words x,y of the same size such that p · x = q · y = r. By adding any same
letters after x and y, we can assume that x and y are both of size s. Let also z, t be two words
such that r · z = p and r · t = q. We can reach q from p with the word x(ty)s−1t. Because the sizes
of x and y are multiples of s we have that (ty)s−1t is of size a multiple of s as well. Hence there
is a word x′ of size s such that p · x′ = q. Symmetrically, there is a word y′ of size s such that
q · y′ = p. Thus (x′y′)ω maps p to itself, and (x′y′)ωx′ maps p to q. They therefore do not define
the same function, and Ms does not satisfies the equations of R.

□

Summary. We can now wrap everything together, and state the theorem that characterises
algebraically all of our classes. It gives another way, directly on the syntactic algebraic objects, to
know whether a path language of tree can be weakly validated (resp. queried) in constant and
logarithmic memory.

Theorem 6.45.
Let L be a regular language and let µ be its syntactic (ordered if needed) stamp. Then:

• L is almost reversible iff µ ∈AG.
• L is E-flat iff µ ∈AG+.
• L is A-flat iff µ ∈AG−.
• L is hierarchically almost reversible iff µ ∈AER.
• L is blindly almost reversible iff µ ∈AQI.
• L is blindly hierarchically almost reversible iff µ ∈AQR.

6.6 Going further

There are several directions for future research. A straightforward line of work is to study
automata with globally injective transition functions. This would allow to give an algebraic
characterisation of blindly E-flat and blindly A-flat languages, and to complete the picture given
by Theorem 6.45. It will very probably be of the shape AQV for some variety of monoids V that
has to be found.

As we have seen, both registerless and stackless models are efficient but their expressive
power is limited. For instance, they cannot compute queries that are about children. However,

6.6. Going further 141

the documents that are processed usually have some additional structure, in particular if there
is available information on their sources. The next question is to use this knowledge to process
documents more efficiently. The general problem is validation against S : given two regular tree
languages L (the target) and S (the schema), determine the complexity of deciding that a given
tree is in L assuming that it belongs to S . At first, it would be nice to characterise for a fixed
schema all regular word languages L such that QL, EL or AL can be validated against S in
constant space. This chapter obtained this result for the schema of all trees, in which case it is
equivalent to weak validation. It is also clear that when S only has trees of bounded depth then
all path languages can be validated against S in constant space. Schemas with limited amount
of branching appear too to allow more languages to be processed efficiently. A crucial schema
is the set of trees that satisfy constraints demanded for XML documents, and understanding
which languages can be validated against this schema would shed some light on the processing
of real-life documents. Nevertheless, studying schemas is a complicated task and not much is
yet known.

Another line of research, already properly identified, is to have a decidable characterisation
of the regular tree languages that are weakly validatable in constant space. Our Theorem 6.4
on horizontal forest algebras, while not known to give decidability, allows to use algebraic
techniques. Indeed, we can decide if a forest algebra (H,V) is horizontal but not if it admits an
expansion (that is to say that (H,V) is a submonoid of the expansion) which is horizontal. For
example, thanks to the lower bound, we know that every language that is weakly validatable in
constant space must satisfies the equations: vω(x) + y + vω(z) = vω(vω(x) + y + vω(z)) for every
context v and forests x,y,z. Can these equations, possibly with some others, help to construct
an horizontal expansion? Answering this question would yield an answer to the longstanding
open question of Segoufin and Vianu. This algebraic approach can help as well when documents
are encoded with the term encoding, that is to say the closing tag does not carry any label
information. In this case, the horizontal property becomes the blind horizontal property: there
exists y ∈H , such that for all v ∈ V there exists xv ∈H such that v(h) = xv +h+y. This uniformity
on y makes the analysis simpler and yields decidability of the problem (when a neutral letter is
present). Note that this was already known in [9], but our approach seems more generalisable to
the markup encoding setting.

To go even further, the ultimate goal would be to have a trichotomy on the space complexity of
weakly validating documents (both for markup and term encoding). It would have the following
form:

Conjecture 6.46.
Let L be a regular tree language. Then one and only one of the following is true, where h is
the height of a tree:

• L is weakly validatable in constant space.
• L is weakly validatable in Θ(log(h)) space.
• L is weakly validatable in Θ(h) space.

A stronger result would be to have a decidable characterisation of all these classes. In this
work, we made progress on this conjecture for path languages of trees, and strongly suspect
that the stackless model captures exactly what can be done with a logarithmic amount of space
available.

Finally, continuing this study can lead to optimisation of actual computations, notably
with the help of vectorisation. As pointed out in the introduction, it has already be done in
RsonPath [45]. But it can be even improved further with the advance of theoretical results. For

142 CHAPTER 6. Processing Regular Properties of XML Documents

instance, having results on schemas could give better algorithms amenable to vectorisation.

Bibliography of the current chapter

[2] Jorge Almeida. Finite Semigroups and Universal Algebra. World Scientific, 1995. doi:
10.1142/2481.

[9] Vince Bárány, Christof Löding, and Olivier Serre. “Regularity Problems for Visibly
Pushdown Languages”. In: Proc. STACS. Springer, 2006. doi: 10.1007/11672142_34.

[11] Corentin Barloy, Filip Murlak, and Charles Paperman. “Stackless Processing of Streamed
Trees”. In: PODS. June 2021. doi: 10.4230/LIPIcs.

[15] David A. Mix Barrington and James C. Corbett. “On the Relative Complexity of Some
Languages in NC1”. In: Inf. Process. Lett. 32.5 (1989). doi: 10.1016/0020-0190(89)90052-
5.

[20] Burchard von Braunmühl and Rutger Verbeek. “Input-Driven Languages are Recognized
in log n Space”. In: Proc. FCT 1983. Springer, 1983. doi: 10.1007/3-540-12689-9_92.

[25] Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin, Thomas C. Shermer, and
Fred Popowich. “Parallel Scanning with Bitstream Addition: An XML Case Study”. In:
Proc. Euro-Par 2011. Springer, 2011. doi: 10.1007/978-3-642-23397-5_2.

[27] Cristiana Chitic and Daniela Rosu. “On Validation of XML Streams Using Finite State
Machines”. In: Proc. WebDB 2004. ACM, 2004. doi: 10.1145/1017074.1017096.

[31] Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Sebastian, and Mohamed
Zergaoui. “Early nested word automata for XPath query answering on XML streams”. In:
Theor. Comput. Sci. 578 (2015). doi: 10.1016/j.tcs.2015.01.017.

[36] Patrick Dymond. “Input-driven Languages Are in Log N Depth”. In: Inf. Process. Lett.
26.5 (Jan. 1988). doi: 10.1016/0020-0190(88)90148-2.

[44] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj D. Kalamkar, Greg
Henry, Hans Pabst, and Alexander Heinecke. “Anatomy of high-performance deep
learning convolutions on SIMD architectures”. In: Proc. SC 2018. IEEE / ACM, 2018. doi:
10.5555/3291656.3291744.

[45] Mateusz Gienieczko, Filip Murlak, and Charles Paperman. “Supporting Descendants in
SIMD-Accelerated JSONPath”. In: Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 4.
ASPLOS ’23. , Vancouver, BC, Canada, Association for Computing Machinery, 2024. doi:
10.1145/3623278.3624754.

[50] Alejandro Grez, Cristian Riveros, and Martín Ugarte. “A Formal Framework for Com-
plex Event Processing”. In: Proc. ICDT 2019. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi: 10.4230/LIPIcs.ICDT.2019.5.

[51] Nathan Grosshans. “A Note on the Join of Varieties of Monoids with LI”. In: 46th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS 2021). 2021.
doi: 10.4230/LIPIcs.MFCS.2021.51.

[52] Nathan Grosshans, Pierre Mckenzie, and Luc Segoufin. “The Power of Programs over
Monoids in DA”. In: 42nd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2017). 2017. doi: 10.4230/LIPIcs.MFCS.2017.2.

https://doi.org/10.1142/2481
https://doi.org/10.1007/11672142_34
https://doi.org/10.4230/LIPIcs
https://doi.org/10.1016/0020-0190(89)90052-5
https://doi.org/10.1016/0020-0190(89)90052-5
https://doi.org/10.1007/3-540-12689-9_92
https://doi.org/10.1007/978-3-642-23397-5_2
https://doi.org/10.1145/1017074.1017096
https://doi.org/10.1016/j.tcs.2015.01.017
https://doi.org/10.1016/0020-0190(88)90148-2
https://doi.org/10.5555/3291656.3291744
https://doi.org/10.1145/3623278.3624754
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://doi.org/10.4230/LIPIcs.MFCS.2021.51
https://doi.org/10.4230/LIPIcs.MFCS.2017.2

Bibliography of the current chapter 143

[53] Sascha Grunert and Daniel Schmidt. A comparison of regex engines. 2017. url: https:
//rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/.

[54] Ashish Kumar Gupta and Dan Suciu. “Stream Processing of XPath Queries with Predi-
cates”. In: Proc. SIGMOD 2003. ACM, 2003. doi: 10.1145/872757.872809.

[60] Yeye He, Siddharth Barman, and Jeffrey F. Naughton. “On Load Shedding in Complex
Event Processing”. In: Proc. ICDT 2014. OpenProceedings.org, 2014. doi: 10.5441/002/
icdt.2014.23.

[70] Eryk Kopczynski. “Invisible Pushdown Languages”. In: Proc. LICS 2016. ACM, 2016. doi:
10.1145/2933575.2933579.

[75] Geoff Langdale and Daniel Lemire. “Parsing gigabytes of JSON per second”. In: VLDB J.
28.6 (2019). doi: 10.1007/s00778-019-00578-5.

[82] Filip Murlak, Charles Paperman, and Michal Pilipczuk. “Schema Validation via Streaming
Circuits”. In: Proc. PODS 2016. ACM, 2016. doi: 10.1145/2902251.2902299.

[84] Dan Olteanu. “SPEX: Streamed and Progressive Evaluation of XPath”. In: IEEE Trans.
Knowl. Data Eng. 19.7 (2007). doi: 10.1109/TKDE.2007.1063.

[85] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. “Filter Before You Parse:
Faster Analytics on Raw Data with Sparser”. In: Proc. VLDB Endow. 11.11 (2018). doi:
10.14778/3236187.3236207.

[96] Jean-Eric Pin. “On reversible automata”. In: Proc. LATIN 1992. Springer, 1992.

[105] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. “Rethinking SIMD Vector-
ization for In-Memory Databases”. In: Proc. SIGMOD 2015. ACM, 2015. doi: 10.1145/
2723372.2747645.

[110] Gang Ren, Peng Wu, and David A. Padua. “An Empirical Study On the Vectorization of
Multimedia Applications for Multimedia Extensions”. In: Proc. IPDPS 2005. IEEE, 2005.
doi: 10.1109/IPDPS.2005.94.

[115] Luc Segoufin and Cristina Sirangelo. “Constant-Memory Validation of Streaming XML
Documents Against DTDs”. In: Proc. ICDT 2007. Springer, 2007. doi: 10.1007/11965893\
_21.

[116] Luc Segoufin and Victor Vianu. “Validating Streaming XML Documents”. In: Proc. PODS
2002. ACM, 2002. doi: 10.1145/543613.543622.

[128] Dan Suciu. “From searching text to querying XML streams”. In: J. Discrete Algorithms 2.1
(2004). doi: 10.1007/3-540-45735-6_2.

[135] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural
networks on CPUs. 2011.

[137] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu, and
Heqing Zhu. “Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs”. In:
Proc. NSDI 2019. USENIX Association, 2019.

[140] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “On complexity and optimization of
expensive queries in complex event processing”. In: Proc. SIGMOD 2014. ACM, 2014.
doi: 10.1145/2588555.2593671.

[141] Yichun Zhang. Regex Engine Matching Speed Benchmark. 2015. url: http://openresty.
org/misc/re/bench/.

[142] Jingren Zhou and Kenneth A. Ross. “Implementing database operations using SIMD
instructions”. In: Proc. SIGMOD 2002. ACM, 2002. doi: 10.1145/564691.564709.

https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://doi.org/10.1145/872757.872809
https://doi.org/10.5441/002/icdt.2014.23
https://doi.org/10.5441/002/icdt.2014.23
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1007/s00778-019-00578-5
https://doi.org/10.1145/2902251.2902299
https://doi.org/10.1109/TKDE.2007.1063
https://doi.org/10.14778/3236187.3236207
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1109/IPDPS.2005.94
https://doi.org/10.1007/11965893_21
https://doi.org/10.1007/11965893_21
https://doi.org/10.1145/543613.543622
https://doi.org/10.1007/3-540-45735-6_2
https://doi.org/10.1145/2588555.2593671
http://openresty.org/misc/re/bench/
http://openresty.org/misc/re/bench/
https://doi.org/10.1145/564691.564709

144 CHAPTER 6. Processing Regular Properties of XML Documents

Chapter7
Incremental Complexity: Maintaining
Regular Languages under Small
Changes

Outline of the current chapter

7.1 Two models 146
7.1.1 The RAM model . 147
7.1.2 Dynamic first-order logic . 148

7.2 Regular languages maintainable in RAM 150
7.2.1 Almost-commutative languages . 150
7.2.2 Equations . 153
7.2.3 Regular languages maintainable in constant time 161
7.2.4 Going further . 162

7.3 Regular languages in Dyn-FO 163
7.3.1 Regular languages in UDyn-Prop 166
7.3.2 Regular languages in UDyn-Σ2 . 167
7.3.3 Regular languages in UDyn-FO2 . 170
7.3.4 Going further . 173

The section on the RAM model is based on unpublished work with
Antoine Amarilli, Louis Jachiet and Charles Paperman. The section
on dynamic first-order logic is based on unpublished work with Felix
Tschirbs and Nils Vortmeier.

Complexity questions usually consider worst-case (or average-case) of the execution of an
algorithm. However, it is frequent that a same algorithm has to be run several times on instances
that are close. In this case, we can often do better than the naive approach that consists in
recomputing everything from scratch every time. Indeed, we can store the intermediate state
of computation, and potentially more, to help future computations. We assume that the input
is changed one bit at a time, and that the auxiliary data has to be maintained efficiently. This

145

146 CHAPTER 7. Maintaining Regular Languages under Small Changes

approach to complexity has been formalised by Miltersen, Subramanian, Vitter and Tamassia [81].
They introduced in particular the class incr-POLYLOGTIME of problems that can be dynamically
maintained with updates in polylogarithmic time, and studied its relation with the class P.

Another point of view, coming from database theory, comes from Dong, Su and Topor [34,
35] and Patnaik and Immerman [90]. Here, we want to evaluate a query on a database (in the
relational model) with the help of auxiliary data that are updated whenever there is a change
in the database. For the updates, motivated by the success of logic in the relational model, the
choice is to use first-order formulae: giving the class known as Dyn-FO. See Schwentick and
Zeume [114] for a survey on Dyn-FO.

Moreover, these incremental complexity classes seem to be related to circuit complexity
classes. Cohen and Tamassia [28] discussed incremental algorithm to maintain the ouput of
special classes of circuits. In Miltersen et al. [81, Section 6], it is shown that some problem that
is hard for circuit classes can be solved efficiently by a dynamic algorithm, exhibiting differences
between the two paradigms. Also, first-order logic is known to correspond to a uniform version
of AC0. Finally, in the framework of Dyn-FO, some lower bounds against circuit classes gave
lower bounds against dynamic classes, showing a transfer of results from the parallel world to
the dynamic world. Indeed Dong and Su [33] (giving credit to Miltersen) used a result of Cai
[24] on the PARITY language and AC0 to show the existence of an arity hierarchy inside Dyn-FO.

Regarding the success of looking at regular languages inside circuit classes, an interesting
question is to look at regular languages inside dynamic classes. Maintaining regular language
in the RAM model has been studied by Skovbjerg Frandsen, Miltersen and Skyum [122]. Their
study has been completed with a complete classification of the dynamic complexity of regu-
lar languages by Amarilli, Jachiet and Paperman [7]. Regular languages inside Dyn-FO have
been investigated by Patnaik and Immerman [90], and continued by Hesse [61]. Gelade, Mar-
quardt and Schwentick [43] proved later that the regular languages are exactly the languages in
Dyn-Prop, the quantifier-free restriction of Dyn-FO. Tschirbs, Vortmeier and Zeume looked at the
maintenance of regular languages under large batch changes.

In this chapter, we propose in a first time to extend the result of Amarilli, Jachiet and
Paperman [7] to the setting of regular languages of trees. Then we continue by looking at the
fine-grained complexity of regular languages inside Dyn-FO, by restricting the available memory
size that the auxiliary structures can access.

7.1 Two models

In this chapter, we study the incremental maintenance of regular languages, both for words and
for trees. The general problem is the following, and is parametrised by a language L over an
alphabet A. At first, there is a word w =⊥n for n an integer and ⊥ a fresh symbol. There is then
an infinite stream of operations on w of the two following sorts:

• SETa(i) for a ∈ A∪ {⊥} and 1 ≤ i ≤ n: sets the ith position of w to the value a.
• MEMBER returns whether w is in L, by ignoring the letter ⊥.

This is the dynamic problem for L.
We wish to study data structures that can be maintained to answer this problem efficiently.

By that, we mean that the structures can be modified efficiently after each SET operation, such
that MEMBER operations are also efficient. In the problem, n is given as part of the input but is
never changed by the stream of operations.

An important class of dynamic problems is related to monoids. Let M be a monoid. We say
that a word w ∈M∗ evaluates to x ∈M if the product of its letters is x. In this case, the alphabet
is A = M and the target language is the set of words of M that evaluate to some fixed x ∈M.

7.1. Two models 147

This problem is called the dynamic problem for M at x. We extend the notation for x replaced
by a subset P of M. If we can solve the dynamic problem for M at every x, we just say that we
can solve the dynamic problem for M. Roughly speaking, if the set of regular languages for
which the dynamic problem is in a given complexity class forms a variety of languages, then it is
enough to look at dynamic problems for monoids instead of languages.

This setting can be extended for regular languages of trees. We start with any tree with only
⊥ labels, and there are operations SETa(i) for every node i. The algebraic counterpart problem
becomes the dynamic problem for (H,V) at x ∈H where (H,V) is a forest algebra, that takes a
tree in V ∆ and accepts if its evaluation is x. To evaluate a leaf, it feeds the corresponding element
of V with the identity of H .

7.1.1 The RAM model

In the literature, the RAM (Random Access Machine) model is defined in many different ways.
To uniformise this model, Grandjean and Jachiet [48] recently proposed a unified and robust
definition for the RAM model. We stick to this notion. This model has registers that can store
positive integers, and instructions that can be used to manipulate integers and to manage the
memory. The input is stored as a size n, and an array of integers of size n. Both words and
trees can be represented in this fashion. In the case of trees, we assume that each node has a
set of pointers to its children. The instructions available consist in a basic set of assembly-like
instructions (with loading of a register value and conditional structures), and with the addition
as only arithmetic operation. The key features of the RAM model are:

• logarithmic word length: the registers can store an integer of value at most polynomial in
the input size n. This is equivalent to requiring that the registers have logarithmic size,

• unit cost: every instruction, in particular the addition, takes a unit time to be executed.

The time of execution of an algorithm in the RAM model is the number of executed unit cost
operations. In [48], it is shown that with the addition only it is possible to emulate many other
arithmetic operations as successor, multiplication, division, modulo, squaring, . . .

Definition 7.1.
A dynamic RAM program P consists in:

• an initialisation algorithm that runs in linear time,
• an update algorithm that takes as parameters an integer and a letter,
• a membership algorithm that returns a Boolean.

All algorithms run in the RAM model and also take the maintained tree as a parameter.

Given a dynamic problem for a regular language L and a dynamic RAM program P , we
initialise data structures in memory with the initialisation algorithm. Afterwards, when an
operation SETa(i) is seen, we run the update algorithm on (i,a) to update the memory. Finally,
when an operation MEMBER is seen, we run the membership algorithm to have a Boolean, with
the help of the auxilliary data structures. We say that P is a dynamic RAM program for L if
the returned Boolean is 1 if and only if the maintained word is in L. We are interested in the
execution time of the update and membership algorithms. For f : N→N a function, we say that
P is in O(f) (resp. o(f)) if the worst case execution of the update and membership algorithm is
bounded by a function in O(f) (resp. o(f)).

We especially consider constant time executions: f : n 7→ 1. Limiting the preprocessing time
is important, as otherwise we could compute all possible executions in exponential time (and

148 CHAPTER 7. Maintaining Regular Languages under Small Changes

memory) and perform the updates and membership queries in constant time for any language.
As usual lower bounds are hard to find. There are only a few of them, all proven in the cell

probe model that only considers the number of registers accessed during a computation. For an
integer d, let Zd be the cyclic group over d elements {0, . . . ,d − 1} with the addition modulo d.
One of the problems we know hard is the prefix-Zd problem: given a maintained word w in Z

∗
d ,

returns the evaluation of the prefix w1 · · ·wi for a membership query with a parameter i ∈N.

Theorem 7.2 (Fredman and Saks [40, Theorem 3]).
For any d ≥ 2, there is no dynamic RAM program in o(log(n)/ log(log(n))) for the prefix-Zd
problem.

One last interesting problem in prefix-U1. The monoid U1 is defined as the syntactic monoid
(a+b)∗a(a+b)∗. It has two elements: one is neutral and the other a zero. This time, the maintained
word has two elements and we want to return the evaluation in U1 of a prefix given a position.
This problem is only conjectured to be hard.

Conjecture 7.3 (Amarilli, Jachiet and Paperman [7, Conjecture 2.3]).
There is no dynamic RAM program in O(1) for the prefix-U1 problem.

7.1.2 Dynamic first-order logic

This setting will only be studied for words, and will therefore be formulated to fit the word case.
This time, the auxiliary data structures that can be maintained are relationaldata bases.

A relational schema is a finite set of symbols called relations. Each relation comes with a fixed
arity. A relation of arity 1 (resp. 2) is called unary (resp. binary). In this work, a domain is a set
of integers of the form {1, . . . ,n}. With an abuse of language, we say in this case that the domain
is the integer n. A database instance D of a schema S over a domain n is a mapping from S to set
of tuples. Namely, a relation R is mapped to a set of tuples of {1, . . . ,n}k for k the arity of R. We
will usually denote tuples with the typography x̄, and x̄i for its ith component. For x̄ a tuple, we
denote by R(x̄) the fact that x̄ is in the image of R.

The alphabet schema is SA = {Wa | a ∈ A∪ {⊥}}, where every relation is of arity one. A finite
word w of size n is represented as a database instance of SA over n with, for a ∈ A∪ {⊥} and
1 ≤ i ≤ n:

Wa(i) if and only if wi = a.

The data structures that are allowed in this setting are databases instances. We want to
update our auxiliary tables with first-order formulae. To work well with words, we choose the
signature consisting of the order < and local letter predicates locα . A first-order formula over a
schema S is a first-order formula constructed with atomic formulae that are of the form R(x̄)
for R a relation of S and x̄ a tuple of variables of size the arity of R. We also add the atomic
formulae for the letter predicates and the chosen numerical predicates: x ≤ y and R(x̄) where
x̄ is a tuple of variables, shifted variables x+ k or x − k, or constants k or max−k. We interpret
these formulae over databases D. Like in Chapter 1, for V a set of variables, a V -structure of
size n is a database over n with a function ν from V to {1, . . . ,n} that induces a partition of V .
The satisfaction relation is analogous, we only give a few cases for the example. We fixed the
signature, so there is no need for an interpretation. Let D be a V -structure of size n:

7.1. Two models 149

• D |= R(x̄) whenever R(ī) stands in D where ī = ν(x̄) (with ν applied component-wise),
• D |= ∃xϕ whenever Di |= ϕ for some i where Di is D with ν(x) = i.

Definition 7.4.
A dynamic logic program P is a tuple (S , (ϕaR)R,a,ϕM , (ϕ

init
R)R) where:

• S is a relational schema that contains the alphabet schema,
• for every relation R and letter a, ϕaR(i, j̄) is a first-order formula over S with the arity of
R plus one free variables,

• ϕM is a first-order sentence over S ,
• for every relation R, ϕinitR (j̄) is a first-order formula over S with the arity of R free

variables.

It will be implicit that S contains the alphabet schema. We now describe the action of a
dynamic logic program P = (S , (ϕaR)R,a,ϕM , (ϕ

init
R)R) on a dynamic problem for L. Initially, we

have a word w = ⊥n and an empty database instance D of S over n that is initialised with the
formulae ϕinitR . To be precise, at the beginning, a relation R contains the tuple j̄ if and only if
D |= ϕinitR (j̄). When there is an operation SETa(i), we update D. After the update, a relation R
contains the tuple j̄ if and only if D |= ϕaR(i, j̄). Note that in this case i and j̄ are fixed, and thus
ϕaR(i, j̄) is a sentence. On an operation MEMBER, the formula ϕM is applied on the current state
of the database. We say that P is a dynamic logic program for L if ϕM is true on a MEMBER
operation exactly when w ∈ L.

Example 7.5.
We give an example of first-order formulae used to maintain a word. That is to say that we
explicit the formula used to maintain the database instance of SA that represents a word w.
In this case, for a,b two letters and 1 ≤ i, j ≤ n:

ϕaWb
(i, j) = (i = j ∧ a = b)∨ (i , j ∧Wb(j)).

These are very simple formulae, and we always assume that the relations Wa are main-
tained in this fashion. This allows to remove every letter predicate a(i) in a formula to replace
them with the predicate Wa(i). In this case, we have to assume that the table W⊥ is initialised
to contain all integers between 1 and n at the beginning.

We define our principal classes of dynamic complexity. We will in particular look at restric-
tions on the arity of the auxiliary schema.

Definition 7.6.
We define the following complexity classes:

• Dyn-FO is the class of languages for which there is a dynamic logic program,
• UDyn-FO is the class of languages for which there is a dynamic logic program with a

schema with only unary relations,
• BDyn-FO is the class of languages for which there is a dynamic logic program with a

schema with only unary and binary relations.

150 CHAPTER 7. Maintaining Regular Languages under Small Changes

We will also look at restriction on the formulae used by dynamic logic programs. For F a
fragment of first-order logic, we denote by Dyn-F the class of languages for which there is a
dynamic logic program with only formulae in F. There are the analogous classes UDyn-F and
BDyn-F. To fit with the classes that already exist in the literature, we denote by Prop the set of
first-order formulae without quantifiers. We extend the notation of all these classes for dynamic
problems for monoids.

7.2 Regular languages maintainable in RAM

The study of regular word languages maintainable in RAM, and in particular dynamic problems
for monoids, has been started by Skovbjerg Frandsen, Miltersen and Skyum [122] who obtained
a partial classification of monoids based on their complexity. Later, this classification has been
completed by Amarilli, Jachiet and Paperman [7] (assuming Conjecture 7.3). It is also based on
algebraic properties of the languages.

We call ZG the variety of monoids that satisfy the equation xω+1y = yxω+1 for every elements
x and y. It means that the elements that are part of a group can commute with every other
element. It generalises both commutative monoids and syntactic monoids of finite languages.

The second variety of monoids is SG and is defined by the equation xωyxω+1 = xω+1yxω for
every elements x and y. It means that two elements that are part of a same group can commute.
We can now state the classification theorem for the classification of regular languages with
regards to the complexity of dynamic RAM program for their dynamic problems.

Theorem 7.7 (Amarilli, Jachiet, Paperman [7]).
Let L be a regular word language. Assuming Conjecture 7.3:

• if L is in ZG, then it has a dynamic RAM program in O(1),
• if L is in SG but not in ZG, then it has a dynamic RAM program in O(log(log(n))) but

none in O(1),
• if L is not in SG, then it has a dynamic RAM program in O(log(n)/ log(log(n))), but none

more efficient.

Their result is even more general: it stands in the case where there is no letter ⊥ in the
alphabet, and the maintained word is initialised arbitrary. In this case, the methods of Section 2.4
apply and the theorem is true with ZG and SG replaced respectively by QLZG and QSG.

We continue this study for the case of the regular tree languages, by giving a decidable
characterisation of the regular tree languages that have a dynamic RAM program in O(1).

7.2.1 Almost-commutative languages

First of all, to apply the algebraic method, we need to check that the complexity class under
study is a variety of forest algebras.

Lemma 7.8.
The regular languages that have a dynamic RAM program in O(1) form a variety of tree
languages.

7.2. Regular languages maintainable in RAM 151

Proof. Let L and L′ be two regular tree languages, and let P and P ′ be two dynamic RAM
programs for them. We describe a dynamic RAM program that maintains a tree t.

• Boolean operations. A program for L∩L′ initialises the memory with both the data
structures from P and P ′, and update them both when needed. The initialisation takes
a linear time, and the updates take a constant time. Finally, to answer an operation
MEMBER, the program queries if the word is in L with P , and in L′ wiht P ′, and
performs a bitwise and of the answers. The ideas for L∪L′ and Lc are similar.

• Quotient. Let c be a context. The new program uses the algorithms of P on input c · t.
We use the initialisation of P , then update the auxiliary memory by setting the values ⊥
on top to c. Thanks to c being finite, it takes a time linear plus a constant, which is still
linear. Then we use the update and membership algorithm without modifying them.

• Inverse morphism. Let (µ,ν) : B∆→ A∆ be a morphism such that L′ = µ−1(L). We assume
that µ(a) has the same shape for every letter a. This is done by plugging some letter ⊥
where needed. The new program uses the algorithms of cP on input µ(t). We use the
initialisation of P : it takes a linear time as the size of µ(t) is proportional to the size of t.
Then for every update, we use the update algorithm of P a constant number of times to
update every letter in µ(a). The membership algorithm remains untouched.

□

Corollary 7.9.
Let L be a regular language and (H,V) be its syntactic forest algebra. Then L has a dynamic
RAM program in O(1) if and only if (H,V) has.

Proof. Assume that (H,V) has a dynamic RAM program in O(1), and that L is recognised
by the subset P of H . There is a dynamic RAM program P for (H,V) at x for every x ∈ P .
Therefore there is a dynamic logic program for (H,V) at P , because languages recognised by
RAM program in O(1) are stable by union. Then L is maintained by P on the subalphabet µ(A).

Conversely, assume that L has a dynamic RAM program in O(1). Let x ∈ H and (µ,ν) :
V ∆→ (H,V) be the morphism that evaluates a tree in V ∆. Then µ−1(x) has a dynamic RAM
program because it is a variety and it is recognised by the syntactic morphism of L. This is
exactly solving the dynamic problem for (H,V) at x. □

The goal is to find an equivalent of the algebraic class ZG that describes the class of regular
languages of words that have a dynamic RAM program in O(1). We first give a combinatorial
description on languages, dubbed almost-commutative languages, that helps with giving an
efficient dynamic program for every language inside this class. We then do an algebraic study of
a counterpart of ZG to derive the lower bounds as well.

Let d be an integer, we say that a set S ⊆N
d is ultimately periodic if there are two vectors

c,p ∈Nd such that
∀x ∈ S, x ≥ c⇒ (x ∈ S⇔ x+ p ∈ S).

Such a set is completely described by c, p and the set T of vectors (component-wise) smaller than
c+ p in S. Given such a description, a vector x is in S if and only if

(x ≤ c∧ x ∈ T)∨ (x > c∧ ((x − c) mod p) + c ∈ T).

The Parikh image of a tree t over an alphabet A is the vector v ∈NA such that for every letter a,
va is the number of nodes labelled by a in t. For B a subalphabet of A and a tree t over A, the

152 CHAPTER 7. Maintaining Regular Languages under Small Changes

projection of t over B is the tree obtained from t by removing every letter not in B. We denote it
by πB(t).

Definition 7.10.
A tree language L is regular-commutative if there exists an ultimately periodic set S ⊆N

A such
that L is the set of trees whose Parikh image is in S.

A tree language L is virtually-singleton if there exists a subalphabet B ⊆ A and a tree t such
that L is the set of trees whose projection over B is t.

A tree language L is almost-commutative if it is a finite Boolean combination of regular-
commutative and virtually-singleton languages.

First, we easily check that every language under consideration is regular.

Fact 7.11.
Every almost-commutative language is regular.

Proof. By the closure of regular languages under Boolean operations, we only need to desribe a
tree automaton for regular-commutative and virtually-singleton languages.

• Let S be an ultimately periodic set of NA. Let c and p given by the definition of ultimately
periodic. The set of states of the tree automaton is the set of vectors smaller than c + p.
There is a transition a(M) → q for every M that performs the addition of its letters,
removes pa to the component a whenever a value reaches ca +pa, and checks that it is q. It
is indeed regular.

• Let B be a subalphabet of A and s be a tree. The tree automaton ignores letters not in B,
and remembers all the trees seen in its states, and reaches a rejecting sink state when the
size is depassed.

□

We give algorithms to maintain both regular-commutative languages and virtually-singleton
languages.

Lemma 7.12.
There is a dynamic RAM program for every regular-commutative language.

Proof. Let L be a regular commutative language with ultimately periodic set S. Let c,p and T
that completely describe S, with T a finite set of vectors smaller than c + p. We describe the
program. The initialisation stores c,p and T in memory, and instanciates a vector with only
zeroes to the size of A. It takes a constant time. The new vector in memory stores the Parikh
image of the maintained tree. It implies that it stores values up to size n, every value therefore
fits into a single memory cell. On operation SETa(i), it retreives the previous value b at position
i. Then it incremenents the Parikh image for the letter a by 1, and decrements the one for b
by 1. It takes constant time. When a query MEMBER is seen, it checks if the Parikh image is
smaller than c. If it is the case, it checks if it is in T , if not it substracts c, does an operation
modulo p, adds c again and checks if it is in T . Every single operation can be done in constant

7.2. Regular languages maintainable in RAM 153

time, and there are constantly many operations. □

Lemma 7.13.
There is a dynamic RAM program for every virtually-singleton language.

Proof. Let L be a virtually-singleton language, with subalphabet B and tree t of size k. We
describe the program. We initialise several structures:

• an array M that contains the markup encoding of the tree with two set of pointers from
the positions of the input word to the corresponding opening and closing positions in M,

• a doubly-linked list L that contains a couple of pointers to M for all positions with a letter
in B,

• and an array T such that the ith cell contains a pointer to the element of L associated to
the position i if it exists.

This is done in linear time.
Assume an operation SETa(i) is seen. We update M by updating to a and ā the images of

the two pointers. We retreive the previous value b at position i. If a and b are both in B or none
are, then we do nothing. If a is in B and b is not, then we add at the beginning of L the couple of
pointers that directs towards the opening and closing positions of i in M, and we add a pointer
to this list element in T . If a is not in B and b is, then we use T to delete the list element stored
at the adress T [i]. All of this takes a constant amount of time.

Assume an operation MEMBER is seen. We check if L has strictly more than k elements.
This is done by following k pointers, hence takes a constant number of steps. If it is the case,
we know that the projection of the maintained tree over B is not t. Otherwise, we sort all
the pointers in L according to the markup encoding (in constant time, as k is still a constant).
Finally, we use M to know the markup encoding of the projection of the tree onto B. It can be
compared with the markup encoding of t to answer the query. □

Corollary 7.14.
There is a dynamic RAM program for every almost-commutative language.

Proof. This is direct with Lemma 7.12, Lemma 7.13 and the closure of languages that have a
dynamic RAM program in O(1) under Boolean operations. □

7.2.2 Equations

We embark on the algebraic characterisation of almost-commutative languages. We will describe
them by a simple equation satisfied by their syntactic forest algebras. We generalise the class ZG
on words to a class ZG on trees. This is the class of forest algebras such that the vertical monoid
is in ZG.

Definition 7.15.

154 CHAPTER 7. Maintaining Regular Languages under Small Changes

We call ZG the set of forest algebras (H,V) such that for all v,w ∈ V :

vω+1w = wvω+1, (ZGv)

Unsurprisingly, every almost-commutative language satisfies this equation.

Lemma 7.16.
Let L be an almost-commutative language and (H,V) be its syntactic forest algebra. We have
that (H,V) satisfies the equation (ZGv).

Proof. We denote by (µ,ν) : A∆→ (H,V) the syntactic morphism of L.
First assume that L is a regular-commutative language. Let S be the associated subset of NA.

Let v,w ∈ V , and c,d two contexts mapped respectively to v and w by ν. We want to show that
c ·d ∼L d ·c. Let e be a context and f a tree, it amounts to show that e ·c ·d(f) ∈ L iff e ·d ·c(f) ∈ L.
These two trees having the same Parikh image we have the equivalence between c · d and d · c.
It implies that vw = wv. In particular, it stands that vω+1w = wvω+1.

Next, assume that L is a virtually-singleton language. Let B and t be the associated subal-
phabet and tree. Let v ∈ V and c be a context mapped to v by ν. If c has no letter in B, then it is
clear that it is equivalent to the neutral context. Thus v = 1 and vω+1w = w = wvω+1. If c has a
letter in B, then, for n strictly greater than the size of t, the projection of cn over B cannot be t.
Thus for every context d and tree f , d · cω(f) is not in L. This implies that vω is a zero x of V .
So vω+1w = x = wω+1.

To conclude, every almost-commutative language, which is a Boolean combination of the
previous two types of languages, also satisfies (ZGv). □

We prove now that this equation (ZGv) is in fact rather powerful and implies a bunch of
other equations. First, for any k ∈N and v ∈ V , every element of the form vω+k can be written
as an (ω+ 1) power, and thefore can be used in the equation (ZGv). It works in particular with
idempotents. Indeed,

(vω+k)ω+1 = vω · vω+k = vω+k .

The first equation that we obtain comes from the fact that the horizontal monoid of a forest
algebra in ZG in is ZG as well. Indeed, by Fact 2.32, H is a submonoid of V . So for (H,V) ∈ ZG
and h,g ∈H :

(ω+ 1) · h+ g = g · (ω+ 1) · h. (ZGh)

The study on ZG for words ([8, Lemma 3.8]) makes it possible to distribute the idempotent
powers: for every h,g ∈H and v,w ∈ V in a forest algebra in ZG we have:

(vw)ω = vωwω, (DISTv)

ω · (h+ g) = ω · h+ω · g. (DISTh)

The equation (ZGv) also gives interesting interactions between the vertical and horizontal
monoids.

Lemma 7.17.
Let (H,V) be a forest algebra in ZG. It satisfies the following equations, for every h ∈H and

7.2. Regular languages maintainable in RAM 155

v ∈ V :

v((ω+ 1) · h) = v(0) + (ω+ 1) · h, (OUTh)

vω+1(h) = vω+1(0) + h. (OUTv)

Proof. Let w = 1 + h be an element of V . For every n ∈N, wn = 1 + n · h. If wn is idempotent,
then w2n(0) = wn(0) and so n · h is idempotent as well. It implies that wω = 1 +ω · h, and thus
wω+1 = 1 + (ω + 1) · h. We can apply (ZGv) on v and w: vwω+1 = wω+1v. This rewrites into
v(1 + (ω+ 1) · h) = v + (ω+ 1) · h. Applying the neutral forest 0 to both sides gives (OUTh).

Now, let w = 1+h. We apply (ZGv) to v and w: vω+1w = wvω+1. This rewrites to vω+1(1+h) =
vω+1 + h. Applying the neutral forest 0 to both sides gives (OUTv). □

We moreover obtain an equation that says that vertical idempotents are horizontal idempo-
tents as well.

Lemma 7.18.
Let (H,V) be a forest algebra in ZG. For every v ∈ V and i, j ∈N, we have that

vω+i(0) + vω+j (0) = vω+i+j (0).

In particular,
vω(0) + vω(0) = vω(0). (IDv)

Proof. Let v ∈ V . We write vω+i+j (0) = vω+i(vω+j (0)) and we apply (OUTv) (with vω+j (0) playing
the role of h). This gives vω+i(vω+j (0)) = vω+i(0) + vω+j (0). The “in particular” part comes from
the special case i = j = 0. □

The last important equation is an equation that draws a brige between horizontal and vertical
idempotent powers.

Lemma 7.19.
Let (H,V) be a forest algebra in ZG. For every h ∈H and v ∈ V , we have that:

ω · v(h) = vω(0) +ω · h. (FLAT)

Proof. We denote by w the element h+ 1 ∈ V . It stands that wω = ω · h+ 1 and v(h) = vw(0). We
start with a chain of equality:

vω(0) +ω · h = vω(ω · h) (by (OUTh))

= vω ·wω(0)

= (vw)ω(0) (by (DISTv))

We now prove that both sides of the equation (FLAT) are equal to vω(0) +ω · h+ω · v(h).

156 CHAPTER 7. Maintaining Regular Languages under Small Changes

On one hand,

vω(0) +ω · h = (vw)ω(0)

= (vw)ω−1(v(h))

= (vw)ω−1(0) + v(h). (by (OUTv))

Repeating the process, for all k ∈N, vω(0)+ω ·h = (vw)ω−k(0)+k ·v(h). Let n be a multiple of
the idempotent powers of both H and V . With this value, n ·v(h) =ω ·v(h) and (vw)ω−n = (vw)ω.
Hence vω(0) +ω · h = (vw)ω(0) +ω · v(h) = vω(0) +ω · h+ω · v(h).

On the other hand,

ω · v(h) = vw(0) + (ω − 1) · v(h)

= vw((ω − 1) · v(h)). (by (OUTh))

Repeating the process, for all k ∈N, ω · v(h) = (vw)k((ω − k) · v(h)). As previously, with k set
to a multiple of the idempotent powers of H and V , we have that

ω · v(h) = (vw)ω(ω · v(h))

= (vw)ω(0) +ω · v(h) (by (OUTh))

= vω(0) +ω · h+ω · v(h).

This concludes the proof. □

We now need a normal form on trees that are mapped on an idempotent through a morphism
into a forest algebra in ZG.

Lemma 7.20.
Let (µ,ν) : A∆ → (H,V) with (H,V) ∈ ZG and n be the idempotent power of V . Let f be a
forest mapped to an idempotent of H . For a1, . . . , ak an enumeration of the letters in f , we
define the forest

Cf = an1 + · · ·+ ank .

It stands that:
µ(f) = µ(Cf).

Proof. We proceed by induction on f : we prove that for every forest f , ω ·µ(f) = µ(Cf). It will
conclude as µ(f) = ω ·µ(f).

If f is empty then f = Cf and thus ω ·µ(f) = µ(f) = µ(Cf).
If f = f1 + f2, then let b1, . . . , bk1

and c1, . . . , ck2
be the letters in f1 and f2. We have:

ω ·µ(f) = ω ·µ(f1) +ω ·µ(f2) (by (DISTh))

= µ(Cf1) +µ(Cf2) (by induction hypothesis)

= µ(bn1) + · · ·+µ(bnk1
) +µ(cn1) + · · ·+µ(cnk2

).

Each of the term in the sum is a vertical idempotent, so by Lemma 7.18 also an horizontal
idempotent, hence we can apply (DISTh) to commute them. Hence we can put them in any

7.2. Regular languages maintainable in RAM 157

order and use idempotency to obtain only one copy of each letter. Finally, we have to see that
the set of letters in f is the union of the letters in f1 and in f2.

If f = a(g), then let b1, · · · ,bk be the letters in g. We have:

ω ·µ(f) = ω · ν(a(□))(µ(f))

= ν(a(□))ω(0) +ω ·µ(f) (by (FLAT))

= µ(an) +µ(Cf) (by induction hypothesis)

= µ(an) +µ(bn1) + · · ·+µ(bnk)

We conclude exactly like in the previous case. □

Let (µ,ν) : A∆→ (H,V) be a morphism and f be a forest. We say that a non-empty context c
is an idempotent factor of f if there exists a context d and a forest g such that:

f = d(c(g)) and ν(c) is an idempotent.

We need the ability to find idempotent factors in forests.

Fact 7.21.
Let (µ,ν) : A∆→ (H,V) be a morphism and f be a forest. If f is of size greater than |V |5|V |6|V | ,
then it is possible to find an idempotent factor in f .

Proof. We use a well known fact that for a monoidM and a word w ∈Mn with n ≥ |M |5|M |, there
is a subword of w that is mapped to an idempotent. See [64, Theorem 1] for fine bounds on n.
There are three cases.

• There is a node with more than |V |5|V | children (or there are that many roots). In this
case, we denote by g1, . . . , gm the forest rooted at every child, and by ci the context gi +□.
We construct a word w ∈ Vm by setting wi = ν(ci). Because m is big enough, this word
contains an idempotent ν(ci · · ·cj). Let d be the context that consists of f with gi + · · ·+ gj
identified in a single node □, and c = ci(· · · (cj)). Thus f = d(c(0)) and ν(c) is an idempotent.

• There is a path of length greater than |V |5|V |, that we assume being from the root to a
leaf. In this case, let a1, . . . , am be the nodes along the path. For 1 ≤ i < m, let li (resp. ri)
be the forest with the left (resp. right) siblings of ai+1. We define ci = ai(li +□+ ri). For
i = 1, we also add the other roots, and cm = am(□). With these definitions, we have that
f = c1(c2(· · · (cm(0)))). We construct a word w ∈ Vm by setting wi = ν(ci). Because m is
big enough, we can find an idempotent ν(ci · · ·cj). Let d = c1(· · · (ci−1)), c = ci(· · · (cj)) and
g = cj+1(· · · (cm(0))). We have f = d(c(g)) and ν(c) is an idempotent.

• Every node has less than |V |5|V | children and every path is of length less than |V |5|V |. In
this case, f has size less than |V |5|V ||V |5|V | . This is a contradiction with the assumption of
the size of f .

□

We can deduce from that a normal form for every tree.

158 CHAPTER 7. Maintaining Regular Languages under Small Changes

d1

c1

f1

1

(a) Finding of an idempotent.

d1

f1c1

ε

1

(b) Extraction with (OUTh) and (OUTv).

dm

fm

c1

ε

cm

ε · · ·
a

1

(c) Repetition until an idempotent with a letter in C is found.

f

a

...

a

a

n

1

(d) Extraction of many as with Lemma 7.20, and
reconstruction of f .

πA/{a}(f)

a

...

a

a

a

a

n+ma

1

(e) Extraction of every a from f with (OUTh) and
(OUTv).

πB(f)

a

...

a

a

a

a

n+ma

b

...

b

b

b

b

n+mb

c

...

c

c

c

c

n+mc

1

(f) Extraction of every letter in C from f .

Figure 7.1: Proof of Lemma 7.22

7.2. Regular languages maintainable in RAM 159

Lemma 7.22.
Let (µ,ν) : A∆ → (H,V) with (H,V) ∈ ZG and n be the idempotent power of V . Let N =
|V |5|V |6|V | . Let f be a forest. Let (m1, . . . ,mk) be the Parikh image of t for an enumeration
A = {a1, . . . , ak}, and ri =mi mod n. We partition A = B∪C with

B = {ai | mi < N },
C = {ai | mi ≥N }.

We define the forest:
Kf =

∑
ai∈C

an+ri
i +πB(f).

It stands that:
µ(f) = µ(Kf).

Proof. The proof is graphically represented in Fig. 7.1. We proceed by induction on the number
of letters in C. If C = �, then Kf = f and they have the same images under µ. Now assume that
C has at least one letter.

First, we want to find an idempotent factor in f that contains a letter in C. Let f0 = f .
Assume we have constructed a sequence of forests f0, . . . , fi and a sequence of contexts c1, . . . , ci ,
such that every fj has size greater than N . Thanks to that, we can apply Fact 7.21 to fi . This
give the decomposition in Fig. 7.1a. Hence we can write fi = di+1(ci+1(gi+1)) with ν(ci+1) an
idempotent of V . Let fi+1 = di+1(gi+1). We claim that µ(fi) = µ(ci+1(0) + fi+1), as represented in
Fig. 7.1b. Indeed, with v = ν(di+1), w = ν(ci+1) an idempotent and h = µ(gi+1):

µ(fi) = µ(di+1(ci+1(gi+1)))

= v ·wω · h
= v · (wω(0) + h) (by (OUTv))

= v · (ω ·wω(0) + h) ((by IDv))

= v(h) +wω(0) (by (OUTh))

= wω(0) + v(h) (by (ZGh))

= µ(ci+1(0) + fi+1)

If ci+1 contains a letter in C, we stop the construction. Otherwise, there exists a letter b in C
such that fi+1 and f have the same number of occurences of b. This implies that fi+1 has size
greater than N , and we can repeat the process. The size of fi decreases at each step, so the
constuction must terminate.

Let f0, . . . , fm and c1, . . . , cm be the obtained sequences, and a be the letter in C that appears
in cm. We have that, as represented in Fig. 7.1c:

µ(f) = µ(cm(0)) + · · ·+µ(c1(0)) +µ(fm).

Consider the forest g = an(0) + cm(0). The contexts ν(an(□)) and ν(cm) are vertical idempotents,
and therefore, by (IDv), both µ(an(0)) and µ(cm(0)) are horizontal idempotents. So by (DISTh),
µ(g) is also an idempotent. Let Cg and Ccm(0) be defined as in the statement of Lemma 7.20.

160 CHAPTER 7. Maintaining Regular Languages under Small Changes

However, g and cm(0) have the same letters, and therefore Cg = Ccm(0). So by Lemma 7.20:

µ(g) = µ(Cg) = µ(Ccm(0)) = µ(cm(0)).

This gives, as represented in Fig. 7.1d:

µ(f) = µ(an(0)) +µ(cm(0)) + · · ·+µ(c1(0)) +µ(fm)

= µ(an(0)) +µ(f).

Secondly, we build a sequence of forests f0, . . . , fm and a sequence of integers n0, . . . ,nm such
that

• f0 = f and n0 = 0,
• for every 0 ≤ i ≤m, µ(an+ni + fi) = µ(f),
• the number of as in f is the number of as in fi plus ni ,
• the number of as in fi is stricly decreasing, and fm has no a.

We show how to construct fi+1 and ni+1 from fi and ni . Assume that there still is an a in fi .
In this case, we can write fi = ci(a(gi)). Let fi+1 = ci(gi). Let v = ν(a(□)), wi = ν(ci) and hi = µ(gi).
The value vω+ni (0) can be written, thanks to Lemma 7.18, as (ω+ 1) · vω+ni (0). So we can apply
(OUTh) with vω+ni (0). We have that:

µ(f) = µ(an+ni + fi)

= vω+ni (0) +wivhi
= wi(v

ω+ni (0) + vhi) (by (OUTh))

= wi(v
ω+ni (vhi)) (by (OUTv))

= wi(v
ω+ni+1(hi))

= wi(v
ω+ni+1(0) + hi) (by (OUTv))

= vω+ni+1(0) +wi(hi) (by (OUTh))

= µ(an+ni+1 + fi+1)

We set ni+1 = ni + 1. We have indeed that fi+1 has strictly less as than fi . In the end, thanks
to the conservation of the number of as, we have that

µ(f) = µ(an+ma + fm)

= µ(an+ra + fm)

with fm being the projection of f on A/{a} and ma is the number of as in f . The situation is
represented in Fig. 7.1e. The last equality comes from the fact that µ(an) = µ(a2n), thus we can
substract n to ma until we reach ra =ma mod n. To conclude, we use the induction hypothesis
on fm, that has one less letter in C than f . We obtain the figure in Fig. 7.1f. □

We have everything we need to conclude.

Theorem 7.23.
A language L is almost-commutative if and only if its syntactic forest algebra is in ZG.

7.2. Regular languages maintainable in RAM 161

Proof. By Lemma 7.16, we have the left-to-right implication. We prove the other one: let L be a
language recognised by a morphism (µ,ν) : A∆→ (H,V), with (H,V) in ZG. Let N = |V |5|V |6|V |

and n be the idempotent power of V . Remember the definition of Kf from the statement
Lemma 7.22. We call the set B the set of rare letters in f and C the set of frequent letters in f ,
and write them Bf and Cf We define an equivalence relation on the set of forests as:

f ∼ g iff


Bf = Bg and Cf = Cg
πBf (f) = πBg (g)
∀a ∈ Cf , |f |a ≡ |g |a mod n

.

By Lemma 7.22, if f ∼ g then Kf = Kg and therefore µ(f) = µ(g). Moreover, there are finitely
many equivalence classes of ∼. Indeed, trees of the form πBf (f) have at most |A|·N letters. From
these two facts we deduce that L is a finite union of equivalence classes of ∼. All is left to do is
to show that an equivalence class X of ∼ is an almost-commutative language. Let B and C such
that A = B∪C, and h be a forest over B, and m ∈ {0, . . . ,n−1}C such that X is the set of forests
whose rare letters are B, frequent letters are C, the projection over B is h and for every a ∈ C,
there is a number of as congruent to ma modulo n. We define L1 to be the virtually-singleton
language of forests whose projection over B is h. Let S be the ultimately-periodic set such that
S consists of vectors x such that

• xa ≥N and xa ≡ma modulo n for every a ∈ C,
• xa = |h|a for every a ∈ B.

We define L2 to be the regular-commutative language of forest whose Parikh image is in S. We
have that

X = L1 ∩L2,

proving that it is almost-commutative. □

7.2.3 Regular languages maintainable in constant time

To conclude, we still need a lower bound. Fortunately for us, the equation that characterises
almost-commutative languages gives us that we can use as a black-box the lower bound obtained
in [7].

Theorem 7.24.
Let L be a regular tree language. Assuming Conjecture 7.3,

L has a dynamic RAM program inO(1) iff L is almost-commutative

iff L is in ZG.

Proof. The second equivalence comes from Theorem 7.23. The first reverse implication comes
from Corollary 7.14. To show the last implication, we show that if a language L is not in ZG,
then it has no dynamic RAM program in O(1). Let (H,V) be the syntactic forest algebra of
L, we know that V is not in ZG. Assume that there is a dynamic program in O(1) for (H,V)
at every h ∈ H . Then there is a dynamic program in O(1) for V at every v ∈ V . Let w be the
maintained word. Indeed, we run in parallel a dynamic RAM program for every h ∈ H . The
maintained tree is without branching of depth the size of w plus a leave of constant value
h+ 1. When a letter of the word is changed, we change the corresponding node of the trees. To

162 CHAPTER 7. Maintaining Regular Languages under Small Changes

b
□

a + □

a
□

a
a
□

1
(a) Vertical monoid.

b

a

a
a

b
□

b
□ , a + □

b
□ , a + □,

a
□,

a
a
□

a + □,
a
□

a
□,

a
a
□

a
a
□

1
(b) Horizontal monoid.

Figure 7.2: Syntactic forest algebra for the antichain language.

answer a query, we check that, for each h ∈H , the tree maintained for h evaluates to v(h). By
faithfulness, we can conclude whether w evaluates to v or not.

So we have a dynamic RAM program in O(1) for V . By Theorem 7.7, this is a contradiction.
So there is no dynamic RAM program in O(1) for (H,V). By Corollary 7.9, neither does L. □

We illustrate this theorem on an example.

Example 7.25.
Let A = {a,b} and let L be the regular language of trees whose as form an antichain. In other
words, there is no node labelled by a with a descendant also labelled by an a. We compute its
syntactic forest algebra (H,V). The corresponding eggbox pictures are depicted in Fig. 7.2,
where the arrows between the elements of the horizontal monoid represent the action. We
can check that a+□ is an idempotent in V , and that (a+□)(a(□)) , (a(□))(a+□). This can be
seen with their respective actions on 0. So V is not in ZG, and neither is (H,V). This implies
that this antichain language has no dynamic RAM program in O(1).

7.2.4 Going further

The next natural step is to try to obtain a trichotomy similar to Theorem 7.7. For that, we have to
find the counterpart of SG for forest algebras. The task is very involved and a characterisation of
the class of languages with a dynamic RAM program in O(log(log(n))) is currently not known.
To give a flavour of the difficulty of the problem, we consider the marked ancestor problem. It
is the language of tree over {a,b,c} that have a single b and such that there is an a in the path
from the b to the root. It has been studied by Alstrup, Husfeldt and Rauhe [5] who have shown
a lower bound in Ω(log(n)/ log(log(n))) for this problem in the cell-probe model, and therefore
in the RAM model as well. However, there are slight modifications of this problem that have

7.3. Regular languages in Dyn-FO 163

more efficient algorithms and can be maintained in O(log(log(n))). For instance, the language
over {a,b} with an a that is an ancestor of another a can be maintained with the latter complexity.
To see that, we maintain the markup encoding of the maintained tree, and we use the techniques
of [7] with van Emde Boas tree to maintain auxiliary data. The marked ancestor problem seems
to be crucial in the understanding of an equivalent of the class SG for tree languages.

Another task is to change the model so that there is no fresh symbol ⊥. Is this case, the tree
is initilialised to any value with the alphabet A. This amounts to study regular tree languages
that possibly have no neutral letter. To study them, we would need a theory similar to the one
developed in Section 2.4 for trees, with equivalent to the notion of locality, with delay theorems
and derived category theorems for trees.

7.3 Regular languages in Dyn-FO

We study the regular languages in the complexity class Dyn-FO, and we are in particular looking
for precise complexity measures on the formulae that are used. Before starting, it is useful to
notice that all the classes under consideration are varieties of languages.

Lemma 7.26.
The regular languages in Dyn-FO, UDyn-Prop and BDyn-Prop form varieties of languages.

Proof. We prove it for Dyn-FO only. It is direct that the constructions preserve the arities of
relations and the absence of quantifiers.

• Boolean operations. Let L and L′ be two languages in Dyn-FO maintained respectively by
P = (S , (ϕaR)R,a,ϕM , (ϕ

init
R)R) and P ′ = (T , (ψaR)R,a,ψM , (ψ

init
R)R). Then L∪L′ has a dynamic

logic program (S ∪ T , (ϕaR)R,a ∪ (ψaR)R,a,ϕM ∨ψM , (ϕinitR)R ∪ (ψinitR)R). Then L∪L′ has a
dynamic logic program (S ∪T , (ϕaR)R,a∪ (ψaR)R,a,ϕM ∧ψM , (ϕinitR)R∪ (ψinitR)R). Then Lc has
a dynamic logic program (S , (ϕaR)R,a,¬ϕM , (ϕinitR)R).

• Inverse morphisms. Let µ : A∗→ B∗ be a morphism and L a regular language over B in
Dyn-FO. Let P = (S , (ϕaR)R,a,ϕM , (ϕ

init
R)R) be a dynamic logic program for L. We want to

show that L′ = µ−1(L) is in Dyn-FO. Let w be the word under changes, of size n.
Let S be a bound on the size of words in µ(A). For a letter a and 1 ≤ s ≤ S, we use µ(a)s to
denote the sth letter of µ(a). If s ≥ |µ(a)|, then µ(a)s =⊥.
We define S ′ to be the schema that consists in copies of S : for every relation R of arity k,
there is a relation Rs̄ in S ′ for s̄ a tuple in {1, . . . ,S}k . In particular, there are S copies of the
alphabet schema. We will use these relations to maintain the image µ(w). The formulae
are, for a,b two letters and 1 ≤ s ≤ S:

ψaWb,s
= (i = j ∧ b = µ(a)s)∨ (i , j ∧Wa,s(j)).

We consider that the relations Wa,s are storing a word w′ of size n · S. Let q and r be the
functions that take a natural number and return its quotient and rest in the Euclidean
division by S. At all time, w′k = a where a is the only letter such that q(k) is in Wa,r(k).
We want to store in the relation Rs̄ all the tuples j̄ such that the tuple (j̄k · S + s̄k)1≤k≤S
would be in the relation R after applying P to get w′. We will build formulae ψa,s

′

R,s̄ (i, j̄)
that will update all the auxilliary relations when w′i·S+s′ is set to a. For R a relation, we

164 CHAPTER 7. Maintaining Regular Languages under Small Changes

write ϕaR in prenex normal form: there is first a block of quantifiers over variables x̄, then
a quantifier-free formula ϕ(i, j̄, x̄). We furthermore write ϕ in disjunctive normal form,
and separate the atomic formulae between the numerical and relation ones. That is to say
that:

ϕ =
∨

Cnum ∧Crel ,

where Cnum (resp. Crel) is a conjunction of numerical (resp. relation) predicates and
their negations. We can assume that a clause Cnum always contains exactly once every
numerical predicate involving the variables ȳ = (i, j̄, x̄). Then every clause Cnum enforces
an order on the variables of ȳ of the form:

Y1 <t1 Y2 <t2 · · · <tp−1
Yp,

where the Yi are a partition of ȳ that symbolises the variables that have to be equals, and
the ≤ti with ti ∈N∪ {∞} symbolise that the variables of Yi have to be at distance ti from
the variables of Yi+1. If ti =∞, it just means that they are ordered. This is called a profile.
Then we set ψa,s

′

R,s̄ (i, j̄) to be the formula ϕaR where every clause R(j̄ ′) in Crel which is
associated to a profile as above is replaced by:∨

t̄∈X
Rt̄(j̄

′),

where X is the set of tuples t̄ such that:

– for all positions k such that j̄ ′k = i, we have t̄k = s′ ,
– for all positions k such that j̄ ′k = j̄k′ for some k′ , we have t̄k = s̄k′ ,
– for all positions k1, k2 such that j̄ ′k1

and j̄ ′k2
are in the same Yk , then t̄k1

= t̄k2
,

– for all positions k1, k2 such that j̄ ′k1
and j̄ ′k2

are in two consecutive Yk separated by
≤d , then t̄k1

+ d = t̄k2
,

– for all positions k1, k2 such that j̄ ′k1
and j̄ ′k2

are in two consecutive Yk separated by
≤∞, then either we do not enforce other conditions, or t̄k1

< t̄k2
and (j̄ ′)k2

is set to
(j̄ ′)k1

(or the other way around),

This new formula emulates the behaviour of ϕaR on the new way of storing the word w′ .
Now, when an operation SETa(i) is seen, we have to simulate the application of SETµ(a)1

(i ·
S), . . . ,SETµ(a)S (i · S + S − 1) in the dynamic problem for w′ . This is done by using in turn

the formulae ψ
µ(a)1,0
R′ for every R′ ∈ S ′ , then every ψ

µ(a)2,1
R′ , . . . To do that we replace every

atomic formula Rs(j̄) in ψ
µ(a)1,0
R′ by ψ

µ(a)2,1
R , and repeat the process.

In the end, we apply the same treatment to ϕM and the initialisation formulae to obtain a
dynamic logic program that maintains L′ = µ−1(L).

• Quotients. Let L be a language in Dyn-FO maintained by P = (S , (ϕaR)R,a,ϕM , (ϕ
init
R)R).

Let a be a letter. We maintain a−1L with the same trick as before: we maintain in L a
word w′ that is encoded with extra relations Va that are never updated and such that Va
only contains 1 and V⊥ contains all the other integers. We initialise the relations with the
initialisation formulae of L, to take into account the presence of a from the start.

□

This implies that we can work with dynamic problems on monoids directly.

7.3. Regular languages in Dyn-FO 165

Corollary 7.27.
Let L be a regular language and M be its syntactic monoid. Then:

L ∈ Dyn-FO⇔M ∈ Dyn-FO.

The statement is also true for UDyn-Prop and BDyn-Prop.

Proof. Assume thatM is in Dyn-FO, and that L is recognised by the subset P . There is a dynamic
logic program P for M at x for every x ∈ P . Therefore there is a dynamic logic program for M
at P , because Dyn-FO is stable by union. Then L is maintained by P on the subalphabet µ(A).

Conversely, assume that L is in Dyn-FO. Let x ∈M and µ :M∗→M be the morphism that
evaluates a word in M∗. Then µ−1(x) is in Dyn-FO because it is a variety and it is recognised by
the syntactic morphism of L. This is exactly solving the dynamic problem for M at x. □

First of all, if we allow binary relations in the auxiliary schema, we can maintain every regular
language very efficiently in Dyn-FO.

Lemma 7.28.
Every regular language is in BDyn-Prop.

Proof. Let M be a monoid and t ∈ M. We want to exhibit a dynamic logic program for the
dynamic problem for M at t. To do that, we maintain the evaluation of every infix thanks to
binary auxiliary relations.

The schema is S = {Rx | x ∈M}, where every relation is binary. The query formula is simply
ϕM = Rt(1,max). The initialisation formulae put every couple in R1 and let the other relations
empty. The update formulae are:

ϕaRx (i, j,k) = (j < i < k)∧


∨
y,z∈M
yaz=x

Ry(j, i − 1)∧Rz(i + 1, k)


∨ (i < j ∨ k < i)∧Rx(j,k).

To be completely precise, we would also have to treat the cases j = i < k, j < i = k and
j = i = k. Note that we do not care about what is stocked in Rx(j,k) for j > k. With these, after
every sequence of SET operations, we have that Rx contains the set of couples (j,k) such that
wj · · ·wk evaluates to x. By Corollary 7.27, every regular language is thus in Dyn-FO. □

This justifies the study of Dyn-FO with only unary auxiliary relations. For instance, we will see
that there are regular languages that are not in UDyn-Prop. The dynamic complexity of regular
languages have also been studied by Tschirbs, Vortmeier and Zeume [132]. They give efficient
algorithms to maintain regular languages in Dyn-FO when several, up to polylogarithmically
many, changes are made at the same time. They also study the work of such programs, that is to
say the number of steps needed to update the auxiliary relations in the RAM model.

166 CHAPTER 7. Maintaining Regular Languages under Small Changes

7.3.1 Regular languages in UDyn-Prop

We start the study of regular languages in UDyn-FO by looking at the subfragment that cannot
use any quantifier. First of all, we remark that when a monoid is a group, maintaining all the
prefixes is enough to have the information about the infixes as well. This motivates the following
lemma.

Lemma 7.29.
Every group is in UDyn-Prop.

Proof. Let G be a group and t ∈ G. We will maintain all the prefixes with unary relations.
The schema is S = {Rg | g ∈ G}, where every relation is unary. The query formula is simply
ϕM = Rt(max). The initialisation formulae put every integer in R1 and let the other relations
empty. The update formulae are:

ϕaRg (i, j) = (i < j)∧


∨
x,y,z∈G

xay−1z=g

Rx(i − 1)∧Ry(i)∧Rz(j)


∨ (j < i)∧Rg (j).

To be completely precise, we woul also have to treat the case i = j. With these, after every
sequence of SET operations, we have that Rg contains the set of integers j such that w1 · · ·wk
evaluates to g. □

We will prove a converse to this lemma, that is to say that we will show that a monoid that
is not a group cannot be maintained in UDyn-Prop. We need a small result from algebra first.
Recall that U1 is the syntactic monoid (a+ b)∗a(a+ b)∗ and has only two elements: one is neutral
and the other a zero. We will prove that it is, in some sense, the smallest aperiodic monoid.

Fact 7.30.
Let M be a monoid that is not a group. Then U1 divides M.

Proof. If M is not a group, it means that there is at least oneH-class which does not contain the
neutral element. Let x ba an element of this class and e = xω be its idempotent. We know that e
is not is the same J -class as the identity. Then {1, e} is a submonoid of M. It is isomorphic to
U1, with e playing the role of the zero. □

The only ingredient left is a lower bound against UDyn-Prop. Luckily for us, they already
exist in [139]. It is based on the substructure lemma [43]: two isomorphic substructures remain
isomorphic when similar changes are applied to them.

Lemma 7.31 (based on Schwentick and Zeume [139]).
The language (a+ b)∗a(a+ b)∗ is not in UDyn-Prop.

7.3. Regular languages in Dyn-FO 167

w1 wl1 wl1+1 wl2 wl2+1 wm

x1

x2

xm

x1wl1+1

x2wl2+1

w1 >J

>J

J
J

...

1

Figure 7.3: Representation of Lemma 7.33

Proof. We derive the result from Proposition 4.8 in [139]. In their framework, they can maintain
not just words but also graphs and are studying maintenance of the reachability relation in
graphs. A 1-layered s-t graph is a (directed) graph of the form:

• vertices are s, t ∪ {1, . . . ,n} for some integer n,
• there are all the edges from {1, . . . ,n} to t, and some edges from s to {1, . . . ,n}.

The precise result in [139] is that the existence of a path from s to t cannot be maintained
in UDyn-Prop. It is straighforward to see that it is in fact only checking whether there is an
edge from s to {1, . . . ,n}, and therefore the latter problem reduces to the regular language
(a+ b)∗a(a+ b)∗. □

We are ready to put everything together.

Theorem 7.32.
The regular languages of UDyn-Prop are precisely the group languages. In symbols,

UDyn-Prop∩Reg = G.

Proof. With Lemma 7.29, we only have to take a regular language L which is not a group
language, and show that it is not in UDyn-Prop. We proceed by contradiction. Let M be the
syntactic monoid of L. By Corollary 7.27, M ∈ UDyn-Prop. It is not a group, so by Fact 7.30
U1 divides M. By Lemma 7.26, U1 is in UDyn-Prop. With Corollary 7.27 again, it implies that
(a+ b)∗a(a+ b)∗ is in UDyn-Prop, contradicting Lemma 7.31. □

7.3.2 Regular languages in UDyn-Σ2

We tackle the question of the least quantifier alternation needed to maintain all regular languages.
It turns out that we only need one alternation. Our proof finds its inspiration in Section 2.3.2 of
William Hesse’s PhD thesis [61]. However, his proof works by studying the combinatorics of
the graph of transitions during the execution of an automaton, and is rather involved. We use
the framework of algebra here to give a simpler and more intuitive proof. It also reduces the
quantifier alternations of the obtained formulae.

The proof is based on the fact that there are only finitely many J -classes in a monoid.
Therefore, when we evaluate a word from left to right, there is only a finite number of changes of
J -classes. We give some notations: for a word w ∈M∗, w[i, j] denotes the subword of w between
indices i and j both included. For x an element, we denote by J (x) its J -class.

168 CHAPTER 7. Maintaining Regular Languages under Small Changes

Lemma 7.33.
Let w be a word of M∗ of size n. Then there exist positions 1 = l0 < l1 < . . . < lm = n with
m ≤ |M | and monoid elements x1, . . . ,xm such that:

i) for 1 ≤ i ≤m, w[1, li] evaluates to xi ,
ii) for 0 ≤ i ≤m and li < j ≤ li+1, w[1, li + 1] J w[1, j],

iii) for 1 ≤ i ≤m, w[1, li]��J w[1, li + 1].

The situation is graphically pictured in Fig. 7.3.

Proof. We set l0 = 0, and we will instanciate each element li by induction. We set li+1 to be the
greatest index greater than li such that w[1, li + 1] J w[1, li+1]. By maximality, we know that iii)
is satisfied for li+1. Then let xi+1 = w[1, li+1]. Moreover, xi is a prefix of xi+1 and thus xi ≥J xi+1.
Then xi��J xiwli+1 and it is impossible that xi+1 and xi are in the same J -class. It implies that
we have a chain of strict relations:

x1 >J x2 >J · · · >J xi .

Such a chain has size bounded by the size of M, concluding the proof. □

We now need a way to detect that a portion of a word evaluates in the same J -class. A small
purely algebraic fact on Green’s relations is proven first.

Fact 7.34.
Let x,y,z ∈M such that xLy and they both belong to the J -class J . Then:

xz ∈ J⇔ yz ∈ J.

Proof. The statement is completely symmetrical, we only need to prove one direction. Suppose
that xz ∈ J , which is equivalent to xJ xz. By assumption, My ⊆ Mx. In particular, y ∈ Mx
and therefore there exists α ∈M such that y = αx. It is a basic fact of monoid theory that if
xJ xz then xRxz (see for instance [95, Theorem 1.9]) As before, there exists β ∈M such that
xzβ = x. Multiplying on the left by α, we get yzβ = y. It implies that yzRy, and in particular
that yz ∈ J . □

We extend ≥J to make sense between an element and a J -class as well. Let J be a J -class of
M, w ∈M∗ and i a position. Let j be the least position such that w[j, i] ≥J J . Then L≥J (w,i) is the
evaluation of w[j, i]. Similarly, let j be the greatest position such that w[i, j] ≥J J . Then R≥J (w,i)
is the evaluation of w[i, j]. In case the indices j do not exists, we set L≥J and R≥J to the value ⊥.

Lemma 7.35.
Let w = uxyzv with u,x,y,z,v ∈M∗, with xy1 is some J -class J . Then xy ∈ J if and only if for
all integers 1 ≤ i ≤ |y|:

L≥J (w,i − 1 + |x|+ |u|) · yi ≥J J.

7.3. Regular languages in Dyn-FO 169

Proof. First, assume that for every i we have L≥J (w,i−1+ |x|+ |u|)·yi ≥J J . We prove by induction
that for every 1 ≤ i ≤ |y|, the word xy1 · · ·yi is in J . The case i = 1 is assumed to hold thanks to
the statement. Now if xy1 · · ·yi is in J , then L≥J (w,i + |x|+ |u|) necessarily contains the evaluation
of xy1 · · ·yi and the assumption gives that xy1 · · ·yiyi+1 ≥J J . However, it has also a prefix in J
and therefore belongs to J .

Second, assume that there exists an i such that L≥J (w,i − 1 + |x| + |u|) · yi ≱J J . We take
the smallest such i, implying as before that xy1 · · ·yi−1 is in J . Let k be the index such that
L≥J (w,i − 1 + |x|+ |u|) is the evaluation of w[k, i − 1 + |x|+ |u|]. The word w[k, i − 1 + |x|+ |u|] has
xy1 · · ·yi−1 has a suffix and is J -greater than J , and thus is in J . This gives that w[k, i−1+ |x|+ |u|]
and xy1 · · ·yi−1 are L-equivalent, as they are J -equivalent and L-ordered. We know that
w[k, i − 1 + |x|+ |u|] · yi is not in J , and so by Fact 7.34 xy1 · · ·yi is not in J . This implies that xy
cannot belong to J . □

As in the case of groups, the goal is to find a unary information that is enough to retreive all
evaluations of infixes in a word. Here the information is the one given by the functions L≥J and
R≥J .

Lemma 7.36.
Let w be the maintained word in a dynamic problem. Assume we have, for every J -class J
and x ∈M, unary relations L≥J,x(i) and R≥J,x(i) that respectively store whether L≥J (w,i) = x
and R≥J (w,i) = x.

Then for every x ∈M, there exists a formula ψx(j,k) in Σ2 that holds if and only if wj · · ·wk
evaluates to x.

Proof. We first give the desired formula, and then prove that it correctly computes the value of
the infixes. It is defined, where J1, . . . , Jm denote the respective J -classes of x1, . . . ,xm, by:

ψx(j,k) =
∨
m≤|M |

x1,...,xm=x∈M

∃j = l0 < . . . < lm = k,

∧
0≤s<m

R≥Js ,xs (j) (a)

∧
∧

0≤s≤m

∀ls < i < ls+1,
∨

y·z≥J Js

L≥Js ,y(i)∧Wz(i + 1)

 (b)

∧
∧

0<s<m

∨
xs ·y≱J Js

Wy(ls + 1). (c)

Assume that wj · · ·wk evaluates to x. Let x1, · · ·xm ∈ M and j = l0 < · · · < lm = k given by
Lemma 7.33. We will refer to i), ii) and iii) in this lemma. Let 0 ≤ s < m. By i) and iii), we
know that the greatest word on the right of j and greater than Js evaluates to xs. By ii) and
Lemma 7.35, we have that for every ls < i < ls+1, the evaluation of the greateast word on the left
of i greater than Js multiplied by wi+1 stays greater than Js. By iii), the letter wls+1 makes xs fall
in J -classes. Therefore the formula is satisfied for the parameters j and k.

Now assume that the formula is satisfied. We use the numbering in the formula. By
induction, we prove that for every s, wj · · ·wls evaluates to xs. Because, lm = k and xs = x, this

170 CHAPTER 7. Maintaining Regular Languages under Small Changes

concludes the proof. By Lemma 7.35 and (b), wj · · ·wls+1
belongs to J . By (c), wj · · ·wls+1

wls+1+1
does not belong to J . So by (a), the greatest word greater than Js on the right of j, which is
necessarily wj · · ·wls+1

, evaluates to xs+1. □

The ability to simulate the maintenance of infixes is all we need to have an efficient dynamic
logic program.

Theorem 7.37.
Every regular language is in UDyn-Σ2.

Proof. Let L be a regular language and M be its syntactic monoid. We describe a dynamic logic
program for the dynamic problem for M at x ∈M. Let w be the maintained word. The schema
S consists in unary relations, for J a J -class and y ∈M, L≥J,y(i) and R≥J,y(i) that respectively
store whether L≥J (w,i) = x and R≥J (w,i) = x. For y ∈M, let ψy be the formula over S given by
Lemma 7.36 that holds if and only if the infix of w evaluates to y. The membership formula
simply uses ψx and is therefore in Σ2:

ϕM = ψx(1,max).

Now assume we see an operation SETa(i). We can compute the new values of the infixes
with the same quantifier-free formulae as in Lemma 7.28.

ψax(i, j,k) = (j < i < k)∧


∨
y,z∈M
yaz=x

ψy(j, i − 1)∧ψz(i + 1, k)


∨ (i < j ∨ k < i)∧ψx(j,k).

There are no negations, hence these still are formulae in Σ2. All is left to do is to give the
updates formulae for R≥J,y , the case for L≥J,y being symmetric.

ϕaR≥J,y (i, j) = ∃k ≥ j,
∨
z≥J J
zt≱JM

ψaz (i, j,k)∧Wt(k + 1).

Once again, the absence of negation of the presence of only an existential quantifier makes
these formulae in Σ2. Hence M ∈ UDyn-Σ2. Because the right-to-left implication of Corol-
lary 7.27 is always true, without the variety assumption, we have that L ∈ UDyn-Σ2. □

7.3.3 Regular languages in UDyn-FO2

We end, for now, the study of the regular languages of Dyn-FO by considering UDyn-FO2. We
defined FO2 by the set of first-order formulae that can use only two variable names. However, in
dynamic logic programs, the update formulae already have several free variables. We therefore
need another definition of FO2 for formulae with free variables. We split the variables between
those that can be quantified and the others. Formally, we write V1 = Vq ∪Vf . In the syntax,
quantifications ∃xϕ only are for x ∈ Vq. In dynamic logic programs, we ask that the variable i
applied in ϕaR(i, j̄) is from Vf , meaning that it cannot be quantified. All the other variables, like j̄
in the definition, are from Vq.

7.3. Regular languages in Dyn-FO 171

Definition 7.38.
We redefine FO2 to be the set of first-order formulae that can use only two variables of Vq. It
is equivalent to ask that every subformula of the form ∃xϕ has at most one free variable in Vq.

For sentences, this definition is equivalent to the one of Chapter 2. It only makes sense to
consider Dyn-FO2 when the schema is unary. Indeed, otherwise there are already more than two
variables from Vq that come from the arity of the updates formulae, and therefore the computed
information could be represented in unary. One of the good property of FO2 over a unary schema
with this definition is compositionality, in a sense we precise in the following statement.

Fact 7.39.
Let ϕ be a formula of FO2 over a unary schema with an atomic subformula R(x). Let also
ψ(i,x) be a FO2 formula with two free variables i ∈ Vf and x ∈ Vq. Then the formula defined
as ϕ with R(x) replaced by ψ(i,x) with i ∈ Vf is also in FO2.

Proof. The proof is direct. In the new formula, every existential subformula of ψ(i,x) has at
most one free variable in Vq by assumption. Moreover, R(x) and ψ(i,x) have the same free
variables in Vq, namely only x, and thus any other existential subformula has at most one free
variable in Vq by assumption on ϕ. □

This property gives a hint that the class UDyn-FO2 is stable under wreath products, making
it possible to maintain complicated languages from simple ones.

Recall the definition of wreath product of M by N from Definition 2.18. If we unfold it, for
f1, . . . , fn ∈MN and x1, . . . ,xn ∈N , the product in M ◦N is:

(f1,x1) · · · (fn,xn) = (z 7→ f1(z)f2(x1z) · · ·fn(x1 · · ·xn−1z),x1 · · ·xn)

This motivates to store the evaluation of every prefix of a word w, instead of only being
able to know its overall evaluation. Let M be a monoid. We say that prefix-M is in Dyn-FO (or
any other class) if there is a dynamic logic program with distinguished unary relations Px for
x ∈M such that after any sequence of operations, Px contains exactly all the integers i such that
w1 · · ·wi = x. In these programs, we can drop ϕM . It is clear that prefix-M ∈ Dyn-FO implies
M ∈ Dyn-FO.

Lemma 7.40.
Let M and N be two monoids such that prefix-M and prefix-N are both in UDyn-FO2. Then:

prefix-(M ◦N) ∈ UDyn-FO2.

Proof. Let P = (S , (ψaR)R,a, (ψ
init
R)R) and P ′ = (S ′ , (ψ′aR)R,a, (ψ

′ init
R)R) be the dynamic logic pro-

grams for N and M respectively, with unary schemas. We maintain the word w.
By Fact 7.39, we can compose formulae. Formally, assume we can maintain some relations

Rs, and a relation T that uses the new values stored in R with a formula ϕaT (i, j). Then replacing
every occurence of R(x) inϕaT (i, j) byϕaR(i,x) gives a formula in FO2 that can be used to maintain

172 CHAPTER 7. Maintaining Regular Languages under Small Changes

the relation T .
The alphabet relations are of the form Wx for x ∈M ◦N . For f ∈MN and y ∈ N , we also

maintain the relations Wf and Wy that carry the projection of the letters into MN and N . Let
π1 be the projection into MN and π2 be the projection into N . They are constructed with, for
instance:

ϕaWf
(i, j) =

∨
x | π1(x)=f

Wx(j).

By using the relations in S and the formulae ψaR, in which the occurences of alphabet
relations are replaced by Wy for y ∈ N , we maintain relations Py , for y ∈ N , that contain the
evaluation in N of the prefixes of the projection of w on N .

Then, we add relations Qf , for f ∈ MN , that contain all integers i such that f = z 7→
fi(x1 · · ·xi−1z). The update formulae are, for f ∈MN :

ϕaQf (i, j) =
∨

(g,y)∈X
Wg (j)∧ Py(j − 1)

where X is the set of (g,y) ∈MN ×N such that for all z ∈N , f (z) = g(yz).
We then use P ′ to have relations Sf for every f ∈MN , that contain the integers i such that

f = z 7→ f1(z) · · ·fi(x1 · · ·xi−1z). We just replace the alphabet relations in ψ
′a
R by Qf . To be precise,

we consider MN as the tuples of M indexed by N . Then we project into every component and
maintain |N |more relations. We use P ′ to maintain the prefixes, then we zip the information
back into the relations Sf . All that can be done easily.

To conclude, we construct one last set of relations Tx for x ∈M ◦N that will carry the desired
prefixes in the wreath product. The updates formulae are:

ϕaTx (i, j) = Tπ1(x)(j)∧ Pπ2(x)(j).

□

The proof of Lemma 7.29 actually shows that we can maintain every prefix of groups in
UDyn-Prop, and therefore in UDyn-FO2 as well. Recall that U2 is the syntactic monoid of the
language (a+ b)∗a. It has three elements {1, a,b} with 1 neutral, a and b idempotent and a · b = b
and b · a = a.

Lemma 7.41.
We have:

prefix-U2 ∈ UDyn-FO2.

Proof. We can directly maintain prefix-U2 without any other auxiliary relations. Let P1, Pa and
Pb be the relations with the prefixes. A word in U ∗2 evaluates to 1 if and only if all letters are 1.
Therefore for any letter c,

ϕcP1
(i, j) = ∀x,x ≤ j⇒W1(x).

We now consider the maintenance of the relation Pa, the case for Pb being symmetric. It is
equivalent with storing if the first non-neutral letter to the left of a position is an a or not. We
describe all the update formulae.

• If a position i is set to a, then Pa(j) stands if and only if there was already an a to the left

7.3. Regular languages in Dyn-FO 173

of j, or if there are only neutral letters between i and j. In symbols:

ϕaPa(i, j) = Pa(j)∨ (∀x, i ≤ x ≤ j⇒W1(x)) .

• If a position i is set to b, then Pa(j) stands if and only if there was already an a to the left
of j and there is a non-neutral letter between i and j. In symbols:

ϕbPa(i, j) = Pa(j)∧¬ (j < i ∧∀x, i ≤ x ≤ j⇒W1(j)) .

• If a position i is set to 1, then Pa(j) depends on whether there are any non-neutral letter
between i and j. If so, then we keep the previous value. If not, then we look at the first
non-neutral letter at the left of i. In symbols:

ϕ1
Pa

(i, j) = (∀x, i ≤ x ≤ j⇒W1(x))∧ Pa(i)
∨ (j < i ∨∃x, i ≤ x ≤ j ∧W1(x))∧ Pa(j).

□
We can conclude thanks to Krohn-Rhodes theorem.

Theorem 7.42.
Every regular language is in UDyn-FO2.

Proof. Let L be a regular language and M be its syntactic monoid. By Krohn-Rodes theorem
(Theorem 2.20), M divides a wreath product of the form M1 ◦ · · · ◦Mn where the Mi are either
groups orU2. By Lemma 7.29 and Lemma 7.41, we know that for every i, prefix-Mi ∈ UDyn-FO2.
By Lemma 7.40, we have that M1 ◦ · · · ◦Mn is in UDyn-FO2 as well. It is not hard to see
that UDyn-FO2 is stable by division, and therefore M ∈ UDyn-FO2. Because the right-to-left
implication of Corollary 7.27 is always true, without the variety assumption, we have that
L ∈ UDyn-FO2.

□

Note that no inclusion is known between UDyn-Σ2 and UDyn-FO2, making both results
uncomparable.

7.3.4 Going further

We have shown that the classes UDyn-Σ2 and UDyn-FO2 are powerful enough to express every
regular language. We have also identified the regular languages of UDyn-Prop. The next obvious
step is to identify the regular languages of UDyn-Σ1, to have a complete picture. First of all, it
is necessary to prove that UDyn-Σ1 ∩Reg forms a positive variety of regular languages. In the
proof of closure under the inverse of a morphism µ in Lemma 7.26, we maintain the image µ(w)
of the word and we have to modify every letter in µ(a) when we change a letter to a. This is
a problem since we cannot compose formulae in Σ1 when there are possibly negations in the
quantifier-free formula. One way to tackle this issue is to change the setting and allow to change
a constant number of letters at the same time. In this setting, the class UDyn-Σ1∩Reg is a variety
of languages. Remark that every expressibility result of the chapter stands even if there are
constantly many changes at the same time. For instance in the formulae given in Lemma 7.28,
when updating the infix between j and k, we check which positions are updates between them,
and recompute the value of the infix with finitely many previous infixes.

174 CHAPTER 7. Maintaining Regular Languages under Small Changes

Moreover, the expressive power of UDyn-Σ1 is not clear, and is hard to precisely describe.
For instance, we know that all languages whose syntactic monoid is in EJ are maintainable. We
recall that this class is the set of monoids whose idempotents generate a J -trivial monoid.

Fact 7.43.
Let L be a regular language whose syntactic monoid is in EJ. It stands that L ∈ UDyn-Σ1.

Proof. This class has been extensively studied by Pin in [93]. Therein (Theorem 6.1 and the
main result), such a language L is shown to have a particular form. There exist group languages
G0, . . . ,Gn and letters a1, . . . , an such that

L = G0a1G1 · · ·anGn.

With Lemma 7.29, we have a unary dynamic logic program with quantifier-free formulae that
maintain whether every prefix of the word is in each Gi . Thanks to the group property, it allows
to compute all infixes with quantifier-free formulae. Now the membership formula quantifies
over x1, . . . ,xn and checks if for every 1 ≤ i ≤ n, there is the letter ai at position xi , and the infix
between xi and xi+1 is in Gi . □

We also supect that all of DA can be maintained. However, we lack lower bounds techniques
to show that some language is not in UDyn-Σ1, which makes it difficult to build an intuition
on candidates that could not be in this dynamic class. The lower bound from [139] used in
Lemma 7.31 is tailored for quantifier-free formula, and is hard to extend to this setting, even
without alternation of quantifiers.

Finally, it is left to future work to broaden the scope of this line of research. One direction
would be to study the fine-grained complexity of the maintainance of regular languages under
polylogarithmically many updates at the same time, and to have some control on the work in the
RAM model as in [132]. Another would be to change the model to accept any initialisation of the
word, instead of setting it to some fresh letter ⊥. Algebraically, it is expected to behave like the
study of regular languages without a neutral letter. For example, it is very likely that the regular
languages of UDyn-Prop in this setting are QLG = LG.

Bibliography of the current chapter

[5] S. Alstrup, T. Husfeldt, and T. Rauhe. “Marked ancestor problems”. In: Proceedings 39th
Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280). 1998. doi:
10.1109/SFCS.1998.743504.

[7] Antoine Amarilli, Louis Jachiet, and Charles Paperman. “Dynamic Membership for
Regular Languages”. In: 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021). Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell.
Vol. 198. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.ICALP.
2021.116.

[8] Antoine Amarilli and Charles Paperman. “Locality and Centrality: The Variety ZG”. In:
Logical Methods in Computer Science Volume 19, Issue 4 (Oct. 2023). doi: 10.46298/lmcs-
19(4:4)2023.

https://doi.org/10.1109/SFCS.1998.743504
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.46298/lmcs-19(4:4)2023
https://doi.org/10.46298/lmcs-19(4:4)2023

Bibliography of the current chapter 175

[24] Jin-yi Cai. “Lower bounds for constant-depth circuits in the presence of help bits”. en. In:
Information Processing Letters 36.2 (Oct. 1990). doi: 10.1016/0020-0190(90)90101-3.

[28] R. F. Cohen and R. Tamassia. “Dynamic expression trees”. In: Algorithmica 13 (1995). doi:
10.1007/BF01190506.

[33] Guozhu Dong and Jianwen Su. “Arity Bounds in First-Order Incremental Evaluation and
Definition of Polynomial Time Database Queries”. In: Journal of Computer and System
Sciences 57.3 (1998). doi: 10.1006/jcss.1998.1565.

[34] Guozhu Dong and Jianwen Su. “First-Order Incremental Evaluation of Datalog Queries”.
In: Database Programming Languages (DBPL-4). Ed. by Catriel Beeri, Atsushi Ohori, and
Dennis E. Shasha. London: Springer London, 1994. doi: 10.1007/978-1-4471-3564-
7_17.

[35] Guozhu Dong and Rodney W. Topor. “Incremental Evaluation of Datalog Queries”.
In: Proceedings of the 4th International Conference on Database Theory. ICDT ’92. Berlin,
Heidelberg: Springer-Verlag, 1992. doi: 10.5555/645500.655916.

[40] M. Fredman and M. Saks. “The cell probe complexity of dynamic data structures”. In:
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing. STOC ’89.
Seattle, Washington, USA: Association for Computing Machinery, 1989. doi: 10.1145/
73007.73040.

[43] Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. “The dynamic complexity
of formal languages”. In: ACM Trans. Comput. Logic 13.3 (2012). doi: 10.1145/2287718.
2287719.

[48] Étienne Grandjean and Louis Jachiet. Which arithmetic operations can be performed in
constant time in the RAM model with addition? 2023. doi: 10.48550/arXiv.2206.13851.

[61] William Hesse. “Dynamic Computational Complexity”. PhD thesis. University of Mas-
sachusetts Amherst, 2003.

[64] Ismaël Jecker. “A Ramsey Theorem for Finite Monoids”. In: 38th International Symposium
on Theoretical Aspects of Computer Science (STACS 2021). Ed. by Markus Bläser and
Benjamin Monmege. Vol. 187. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.STACS.2021.44.

[81] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia.
“Complexity models for incremental computation”. In: Theoretical Computer Science 130.1
(1994). doi: 10.1016/0304-3975(94)90159-7.

[90] Sushant Patnaik and Neil Immerman. “Dyn-FO: A Parallel, Dynamic Complexity Class”.
In: Journal of Computer and System Sciences 55.2 (1997). doi: 10.1006/jcss.1997.1520.

[93] Jean-Eric Pin. “BG=PG: a success story”. In: NATO ASI Series C Mathematical and Physical
Sciences-Advanced Study Institute 466 (1995).

[95] Jean-Eric Pin. Mathematical foundations of automata theory. 2014. url: http://www.irif.
fr/~jep/PDF/MPRI/MPRI.pdf.

[114] Thomas Schwentick and Thomas Zeume. “Dynamic complexity: recent updates”. In:
ACM SIGLOG News 3.2 (2016). doi: 10.1145/2948896.2948899.

[122] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. “Dynamic word
problems”. In: J. ACM 44.2 (1997). doi: 10.1145/256303.256309.

https://doi.org/10.1016/0020-0190(90)90101-3
https://doi.org/10.1007/BF01190506
https://doi.org/10.1006/jcss.1998.1565
https://doi.org/10.1007/978-1-4471-3564-7_17
https://doi.org/10.1007/978-1-4471-3564-7_17
https://doi.org/10.5555/645500.655916
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/2287718.2287719
https://doi.org/10.1145/2287718.2287719
https://doi.org/10.48550/arXiv.2206.13851
https://doi.org/10.4230/LIPIcs.STACS.2021.44
https://doi.org/10.1016/0304-3975(94)90159-7
https://doi.org/10.1006/jcss.1997.1520
http://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.1145/2948896.2948899
https://doi.org/10.1145/256303.256309

176 CHAPTER 7. Maintaining Regular Languages under Small Changes

[132] Felix Tschirbs, Nils Vortmeier, and Thomas Zeume. “Dynamic Complexity of Regular
Languages: Big Changes, Small Work”. In: 31st EACSL Annual Conference on Computer
Science Logic (CSL 2023). Ed. by Bartek Klin and Elaine Pimentel. Vol. 252. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPIcs.CSL.2023.35.

[139] Thomas Zeume and Thomas Schwentick. “On the quantifier-free dynamic complexity of
Reachability”. In: Information and Computation 240 (2015). doi: 10.1016/j.ic.2014.09.
011.

https://doi.org/10.4230/LIPIcs.CSL.2023.35
https://doi.org/10.1016/j.ic.2014.09.011
https://doi.org/10.1016/j.ic.2014.09.011

Conclusion

Motivated by the success of the systematic study of regular languages inside circuits classes, we
proposed to continue this study for other complexity classes, hoping to improve our understand-
ing of them in the process. We obtained several new results in this thesis, for different models of
computation:

• Circuit complexity. We proved that Σ2 has the Straubing property, showing that the
regular languages expressible by a depth-3 Boolean circuit with bounded top fan-in are
precisely those expressible by a formula in Σ2[reg].

• Streaming complexity. We characterised the regular path languages of trees that can be
weakly validated both with a finite automaton and with a stackless automaton, a new
model that can store the current depth of the streamed tree.

• Incremental complexity in RAM. We showed that the regular tree languages that can be
maintained in RAM in constant time are those whose syntactic forest algebra has a vertical
monoid in ZG, extending the result for words.

• Incremental first-order complexity . We studied the fine-grained complexity of regular
languages in Dyn-FO. In particular, we showed that the regular languages in UDyn-Prop
are precisely the group languages. We also gave efficient algorithms to maintain every
regular language in UDyn-Σ2 and UDyn-FO2.

We already mentioned in their respective chapters the leads for future work in each of these
areas. We hope to keep studying the regular languages in other complexity classes. For instance,
Theorem 4.17 gives that the set of regular languages of AC0 with logarithmically many maj-gates
is QA, the same as for AC0. It would be interesting to investigate the fine-grained complexity of
AC0 with fixed small depth and few additional maj-gates. For instance, we give a lower bound in
Theorem 3.27 against circuits with a single maj-gate, depth 2, and linear size. We want to extend
this result, with the help of the discriminator lemma (Lemma 3.25) to characterise the regular
languages of very small classes of circuits with maj-gates.

177

178 Conclusion

Bibliography

[1] M. Ajtai. “Σ1
1-Formulae on finite structures”. en. In: Annals of Pure and Applied Logic 24.1

(July 1983). doi: 10.1016/0168-0072(83)90038-6.

[2] Jorge Almeida. Finite Semigroups and Universal Algebra. World Scientific, 1995. doi:
10.1142/2481.

[3] Jorge Almeida and Ana P. Escada. “The globals of pseudovarieties of ordered semigroups
containing B2 and an application to a problem proposed by Pin”. eng. In: RAIRO -
Theoretical Informatics and Applications 39.1 (2010). doi: 10.1051/ita:2005001.

[4] Noga Alon and Pavel Pudlak. “Superconcentrators of depths 2 and 3; odd levels help
(rarely)”. In: Journal of Computer and System Sciences 48.1 (Feb. 1994). doi: 10.1016/
S0022-0000(05)80027-3.

[5] S. Alstrup, T. Husfeldt, and T. Rauhe. “Marked ancestor problems”. In: Proceedings 39th
Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280). 1998. doi:
10.1109/SFCS.1998.743504.

[6] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. “Improved bounds for the
sunflower lemma”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing. 2020. doi: 10.4007/annals.2021.194.3.5.

[7] Antoine Amarilli, Louis Jachiet, and Charles Paperman. “Dynamic Membership for
Regular Languages”. In: 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021). Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell.
Vol. 198. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.ICALP.
2021.116.

[8] Antoine Amarilli and Charles Paperman. “Locality and Centrality: The Variety ZG”. In:
Logical Methods in Computer Science Volume 19, Issue 4 (Oct. 2023). doi: 10.46298/lmcs-
19(4:4)2023.

[9] Vince Bárány, Christof Löding, and Olivier Serre. “Regularity Problems for Visibly
Pushdown Languages”. In: Proc. STACS. Springer, 2006. doi: 10.1007/11672142_34.

[10] Corentin Barloy, Michael Cadilhac, Charles Paperman, and Thomas Zeume. “The Regular
Languages of First-Order Logic with One Alternation”. In: Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’22. Association for Computing
Machinery, Aug. 2022. doi: 10.1145/3531130.3533371.

[11] Corentin Barloy, Filip Murlak, and Charles Paperman. “Stackless Processing of Streamed
Trees”. In: PODS. June 2021. doi: 10.4230/LIPIcs.

[12] David Barrington, Neil Immerman, and Howard Straubing. “On uniformity within NC1”.
In: July 1988. doi: 10.1109/SCT.1988.5262.

179

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1142/2481
https://doi.org/10.1051/ita:2005001
https://doi.org/10.1016/S0022-0000(05)80027-3
https://doi.org/10.1016/S0022-0000(05)80027-3
https://doi.org/10.1109/SFCS.1998.743504
https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.46298/lmcs-19(4:4)2023
https://doi.org/10.46298/lmcs-19(4:4)2023
https://doi.org/10.1007/11672142_34
https://doi.org/10.1145/3531130.3533371
https://doi.org/10.4230/LIPIcs
https://doi.org/10.1109/SCT.1988.5262

180 Bibliography

[13] David A. Barrington. “Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1”. In: Journal of Computer and System Sciences 38 (1989).
doi: 10.1016/0022-0000(89)90037-8.

[14] David A. Barrington, Kevin Compton, Howard Straubing, and Denis Thérien. “Regular
languages in NC1”. In: Journal of Computer and System Sciences 44.3 (1992). doi: 10.1016/
0022-0000(92)90014-A.

[15] David A. Mix Barrington and James C. Corbett. “On the Relative Complexity of Some
Languages in NC1”. In: Inf. Process. Lett. 32.5 (1989). doi: 10.1016/0020-0190(89)90052-
5.

[16] David A. Mix Barrington and Denis Thérien. “Finite monoids and the fine structure of
NC1”. In: J. ACM 35.4 (1988). doi: 10.1145/48014.63138.

[17] Mikolaj Bojanczyk and Igor Walukiewicz. “Forest Algebras”. en. In: Logic and Automata
(Oct. 2006). doi: https://hal.science/hal-00346087/.

[18] Mikołaj Bojańczyk. “Algebra for trees”. en. In: Handbook of Automata Theory. Ed. by
Jean-Éric Pin. Zuerich, Switzerland: European Mathematical Society Publishing House,
Sept. 2021. doi: 10.4171/Automata-1/22.

[19] Mikołaj Bojańczyk. “Recognisable Languages over Monads”. In: Developments in Language
Theory. Ed. by Igor Potapov. Cham: Springer International Publishing, 2015. doi: 10.
1007/978-3-319-21500-6_1.

[20] Burchard von Braunmühl and Rutger Verbeek. “Input-Driven Languages are Recognized
in log n Space”. In: Proc. FCT 1983. Springer, 1983. doi: 10.1007/3-540-12689-9_92.

[21] J. Büchi. “Weak Second-Order Arithmetic and Finite Automata”. In: Mathematical Logic
Quarterly 6 (1960). doi: 10.1007/978-1-4613-8928-6_22.

[22] S. R. Buss. “The Boolean formula value problem is in ALOGTIME”. In: Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing. STOC ’87. New York, New
York, USA: Association for Computing Machinery, 1987. doi: 10.1145/28395.28409.

[23] Michaël Cadilhac and Charles Paperman. The Regular Languages of Wire Linear AC 0. en.
Dec. 2021. doi: 10.1007/s00236-022-00432-2.

[24] Jin-yi Cai. “Lower bounds for constant-depth circuits in the presence of help bits”. en. In:
Information Processing Letters 36.2 (Oct. 1990). doi: 10.1016/0020-0190(90)90101-3.

[25] Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin, Thomas C. Shermer, and
Fred Popowich. “Parallel Scanning with Bitstream Addition: An XML Case Study”. In:
Proc. Euro-Par 2011. Springer, 2011. doi: 10.1007/978-3-642-23397-5_2.

[26] Laura Chaubard, Jean-Éric Pin, and Howard Straubing. “Actions, wreath products of
C-varieties and concatenation product”. In: Theoretical Computer Science. In honour of
Professor Christian Choffrut on the occasion of his 60th birthday 356.1 (May 2006). doi:
10.1016/j.tcs.2006.01.039.

[27] Cristiana Chitic and Daniela Rosu. “On Validation of XML Streams Using Finite State
Machines”. In: Proc. WebDB 2004. ACM, 2004. doi: 10.1145/1017074.1017096.

[28] R. F. Cohen and R. Tamassia. “Dynamic expression trees”. In: Algorithmica 13 (1995). doi:
10.1007/BF01190506.

[29] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications.
2008. doi: https://inria.hal.science/hal-03367725.

https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0020-0190(89)90052-5
https://doi.org/10.1016/0020-0190(89)90052-5
https://doi.org/10.1145/48014.63138
https://doi.org/https://hal.science/hal-00346087/
https://doi.org/10.4171/Automata-1/22
https://doi.org/10.1007/978-3-319-21500-6_1
https://doi.org/10.1007/978-3-319-21500-6_1
https://doi.org/10.1007/3-540-12689-9_92
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/s00236-022-00432-2
https://doi.org/10.1016/0020-0190(90)90101-3
https://doi.org/10.1007/978-3-642-23397-5_2
https://doi.org/10.1016/j.tcs.2006.01.039
https://doi.org/10.1145/1017074.1017096
https://doi.org/10.1007/BF01190506
https://doi.org/https://inria.hal.science/hal-03367725

Bibliography 181

[30] Luc Dartois and Charles Paperman. “Alternation Hierarchies of First Order Logic with
Regular Predicates”. en. In: Fundamentals of Computation Theory. Ed. by Adrian Kosowski
and Igor Walukiewicz. Cham: Springer International Publishing, 2015. doi: 10.1007/978-
3-319-22177-9_13.

[31] Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Sebastian, and Mohamed
Zergaoui. “Early nested word automata for XPath query answering on XML streams”. In:
Theor. Comput. Sci. 578 (2015). doi: 10.1016/j.tcs.2015.01.017.

[32] Danny Dolev, Cynthia Dwork, Nicholas Pippenger, and Avi Wigderson. “Superconcen-
trators, Generalizers and Generalized Connectors with Limited Depth (Preliminary
Version)”. In: Jan. 1983. doi: 10.1145/800061.808731.

[33] Guozhu Dong and Jianwen Su. “Arity Bounds in First-Order Incremental Evaluation and
Definition of Polynomial Time Database Queries”. In: Journal of Computer and System
Sciences 57.3 (1998). doi: 10.1006/jcss.1998.1565.

[34] Guozhu Dong and Jianwen Su. “First-Order Incremental Evaluation of Datalog Queries”.
In: Database Programming Languages (DBPL-4). Ed. by Catriel Beeri, Atsushi Ohori, and
Dennis E. Shasha. London: Springer London, 1994. doi: 10.1007/978-1-4471-3564-
7_17.

[35] Guozhu Dong and Rodney W. Topor. “Incremental Evaluation of Datalog Queries”.
In: Proceedings of the 4th International Conference on Database Theory. ICDT ’92. Berlin,
Heidelberg: Springer-Verlag, 1992. doi: 10.5555/645500.655916.

[36] Patrick Dymond. “Input-driven Languages Are in Log N Depth”. In: Inf. Process. Lett.
26.5 (Jan. 1988). doi: 10.1016/0020-0190(88)90148-2.

[37] Samuel Eilenberg. “Automata, Languages and Machines, Vol. B”. In: Verlag: Academic
Press Inc, 1976.

[38] R. Erdos P.and Raso. “Intersection theorems for systems of finite sets”. In: journal of the
London Mathematical Society 35.1 (1960).

[39] Ronald Fagin. “Generalized first-order spectra, and polynomial time recognizable sets”.
In: SIAM-AMS Proc. 7 (Jan. 1974).

[40] M. Fredman and M. Saks. “The cell probe complexity of dynamic data structures”. In:
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing. STOC ’89.
Seattle, Washington, USA: Association for Computing Machinery, 1989. doi: 10.1145/
73007.73040.

[41] Merrick Furst, James B Saxe, and Michael Sipser. “Parity, circuits, and the polynomial-
time hierarchy”. en. In: (1984). doi: 10.1007/BF01744431.

[42] Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. “Duality and Equational Theory of
Regular Languages”. In: Automata, Languages and Programming. Ed. by Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-
540-70583-3_21.

[43] Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. “The dynamic complexity
of formal languages”. In: ACM Trans. Comput. Logic 13.3 (2012). doi: 10.1145/2287718.
2287719.

https://doi.org/10.1007/978-3-319-22177-9_13
https://doi.org/10.1007/978-3-319-22177-9_13
https://doi.org/10.1016/j.tcs.2015.01.017
https://doi.org/10.1145/800061.808731
https://doi.org/10.1006/jcss.1998.1565
https://doi.org/10.1007/978-1-4471-3564-7_17
https://doi.org/10.1007/978-1-4471-3564-7_17
https://doi.org/10.5555/645500.655916
https://doi.org/10.1016/0020-0190(88)90148-2
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/73007.73040
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/10.1145/2287718.2287719
https://doi.org/10.1145/2287718.2287719

182 Bibliography

[44] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj D. Kalamkar, Greg
Henry, Hans Pabst, and Alexander Heinecke. “Anatomy of high-performance deep
learning convolutions on SIMD architectures”. In: Proc. SC 2018. IEEE / ACM, 2018. doi:
10.5555/3291656.3291744.

[45] Mateusz Gienieczko, Filip Murlak, and Charles Paperman. “Supporting Descendants in
SIMD-Accelerated JSONPath”. In: Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 4.
ASPLOS ’23. , Vancouver, BC, Canada, Association for Computing Machinery, 2024. doi:
10.1145/3623278.3624754.

[46] Mika Göös, Artur Riazanov, Anastasia Sofronova, and Dmitry Sokolov. “Top-Down Lower
Bounds for Depth-Four Circuits”. In: 2023 IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS). 2023. doi: 10.1109/FOCS57990.2023.00063.

[47] Parikshit Gopalan and Rocco Servedio. Learning and Lower Bounds for AC0 with
Threshold Gates. en. Tech. rep. TR10-074. Electronic Colloquium on Computational
Complexity (ECCC), Apr. 2010. doi: 10.1007/978-3-642-15369-3_44.

[48] Étienne Grandjean and Louis Jachiet. Which arithmetic operations can be performed in
constant time in the RAM model with addition? 2023. doi: 10.48550/arXiv.2206.13851.

[49] J. A. Green. “On the Structure of Semigroups”. In: Annals of Mathematics 54.1 (1951).

[50] Alejandro Grez, Cristian Riveros, and Martín Ugarte. “A Formal Framework for Com-
plex Event Processing”. In: Proc. ICDT 2019. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi: 10.4230/LIPIcs.ICDT.2019.5.

[51] Nathan Grosshans. “A Note on the Join of Varieties of Monoids with LI”. In: 46th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS 2021). 2021.
doi: 10.4230/LIPIcs.MFCS.2021.51.

[52] Nathan Grosshans, Pierre Mckenzie, and Luc Segoufin. “The Power of Programs over
Monoids in DA”. In: 42nd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2017). 2017. doi: 10.4230/LIPIcs.MFCS.2017.2.

[53] Sascha Grunert and Daniel Schmidt. A comparison of regex engines. 2017. url: https:
//rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/.

[54] Ashish Kumar Gupta and Dan Suciu. “Stream Processing of XPath Queries with Predi-
cates”. In: Proc. SIGMOD 2003. ACM, 2003. doi: 10.1145/872757.872809.

[55] Yuri Gurevich and Harry R. Lewis. “A logic for constant-depth circuits”. In: Information
and Control 61.1 (1984). doi: 10.1016/S0019-9958(84)80062-5.

[56] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán.
“Threshold circuits of bounded depth”. en. In: Journal of Computer and System Sciences
46.2 (Apr. 1993). doi: 10.1016/0022-0000(93)90001-D.

[57] Kristoffer Arnsfelt Hansen and Michal Koucký. “A New Characterization of ACC0 and
Probabilistic CC0”. en. In: computational complexity 19.2 (May 2010). doi: 10.1007/
s00037-010-0287-z.

[58] J. Håstad, S. Jukna, and P. Pudlàk. “Top-down lower bounds for depth-three circuits”. en.
In: Computational Complexity 5.2 (June 1995). doi: 10.1007/BF01268140.

[59] Johan Håstad. “Computational limitations for small depth circuits”. en. Thesis. Mas-
sachusetts Institute of Technology, 1986.

https://doi.org/10.5555/3291656.3291744
https://doi.org/10.1145/3623278.3624754
https://doi.org/10.1109/FOCS57990.2023.00063
https://doi.org/10.1007/978-3-642-15369-3_44
https://doi.org/10.48550/arXiv.2206.13851
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://doi.org/10.4230/LIPIcs.MFCS.2021.51
https://doi.org/10.4230/LIPIcs.MFCS.2017.2
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://doi.org/10.1145/872757.872809
https://doi.org/10.1016/S0019-9958(84)80062-5
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1007/s00037-010-0287-z
https://doi.org/10.1007/s00037-010-0287-z
https://doi.org/10.1007/BF01268140

Bibliography 183

[60] Yeye He, Siddharth Barman, and Jeffrey F. Naughton. “On Load Shedding in Complex
Event Processing”. In: Proc. ICDT 2014. OpenProceedings.org, 2014. doi: 10.5441/002/
icdt.2014.23.

[61] William Hesse. “Dynamic Computational Complexity”. PhD thesis. University of Mas-
sachusetts Amherst, 2003.

[62] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[63] Neil Immerman. “Languages that Capture Complexity Classes”. In: SIAM Journal on
Computing 16.4 (1987). doi: 10.1137/0216051.

[64] Ismaël Jecker. “A Ramsey Theorem for Finite Monoids”. In: 38th International Symposium
on Theoretical Aspects of Computer Science (STACS 2021). Ed. by Markus Bläser and
Benjamin Monmege. Vol. 187. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.STACS.2021.44.

[65] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Berlin Hei-
delberg, 2012. doi: 10.1007/978-3-642-24508-4.

[66] Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. 1st. Springer
Publishing Company, Incorporated, 2010.

[67] Mark Kambites. “On the Krohn–Rhodes complexity of semigroups of upper triangular
matrices”. In: International Journal of Algebra and Computation 17.01 (2007). doi: 10.
1142/S0218196707003548.

[68] Hans Kamp. “Tense Logic and the Theory of Linear Order”. PhD thesis. Ucla, 1968.

[69] SC Kleene. “Representation of events in nerve nets and finite automata”. In: Automata
Studies: Annals of Mathematics Studies. Number 34 34 (1956).

[70] Eryk Kopczynski. “Invisible Pushdown Languages”. In: Proc. LICS 2016. ACM, 2016. doi:
10.1145/2933575.2933579.

[71] M. Koucky, S. Poloczek, C. Lautemann, and Denis Therien. “Circuit lower bounds via
Ehrenfeucht-Fraisse games”. In: vol. 2006. Jan. 2006. doi: 10.1109/CCC.2006.12.

[72] Michal Koucký, Pavel Pudlak, and Denis Therien. “Bounded-depth circuits: Separating
wires from gates”. In: May 2005. doi: 10.1145/1060590.1060629.

[73] Andreas Krebs and Howard Straubing. Regular languages defined by first-order formulas
without quantifier alternation. Aug. 2022. doi: 10.48550/arXiv.2208.10480.

[74] Kenneth Krohn and John Rhodes. “Algebraic Theory of Machines. I. Prime Decompo-
sition Theorem for Finite Semigroups and Machines”. In: Transactions of the American
Mathematical Society 116 (1965).

[75] Geoff Langdale and Daniel Lemire. “Parsing gigabytes of JSON per second”. In: VLDB J.
28.6 (2019). doi: 10.1007/s00778-019-00578-5.

[76] Per Lindström. “First Order Predicate Logic with Generalized Quantifiers”. In: Theoria
32.3 (1966). doi: 10.1111/j.1755-2567.1966.tb00600.x.

[77] Nancy A. Lynch. “Log Space Recognition and Translation of Parenthesis Languages”. In:
J. ACM 24 (1977). doi: 10.1145/322033.322037.

[78] Alexis Maciel, Pierre Péladeau, and Denis Thérien. “Programs over semigroups of dot-
depth one”. In: Theoretical Computer Science 245.1 (2000). doi: 10.1016/S0304-3975(99)
00278-9.

https://doi.org/10.5441/002/icdt.2014.23
https://doi.org/10.5441/002/icdt.2014.23
https://doi.org/10.1137/0216051
https://doi.org/10.4230/LIPIcs.STACS.2021.44
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1142/S0218196707003548
https://doi.org/10.1142/S0218196707003548
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1109/CCC.2006.12
https://doi.org/10.1145/1060590.1060629
https://doi.org/10.48550/arXiv.2208.10480
https://doi.org/10.1007/s00778-019-00578-5
https://doi.org/10.1111/j.1755-2567.1966.tb00600.x
https://doi.org/10.1145/322033.322037
https://doi.org/10.1016/S0304-3975(99)00278-9
https://doi.org/10.1016/S0304-3975(99)00278-9

184 Bibliography

[79] Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T. research
monograph no. 65). The MIT Press, 1971.

[80] Or Meir and Avi Wigderson. “Prediction from Partial Information and Hindsight, with
Application to Circuit Lower Bounds”. en. In: computational complexity 28.2 (June 2019).
doi: 10.1007/s00037-019-00177-4.

[81] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia.
“Complexity models for incremental computation”. In: Theoretical Computer Science 130.1
(1994). doi: 10.1016/0304-3975(94)90159-7.

[82] Filip Murlak, Charles Paperman, and Michal Pilipczuk. “Schema Validation via Streaming
Circuits”. In: Proc. PODS 2016. ACM, 2016. doi: 10.1145/2902251.2902299.

[83] Anil Nerode. “Linear automaton transformations”. In: Proceedings of the American Mathe-
matical Society 9.4 (1958).

[84] Dan Olteanu. “SPEX: Streamed and Progressive Evaluation of XPath”. In: IEEE Trans.
Knowl. Data Eng. 19.7 (2007). doi: 10.1109/TKDE.2007.1063.

[85] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. “Filter Before You Parse:
Faster Analytics on Raw Data with Sparser”. In: Proc. VLDB Endow. 11.11 (2018). doi:
10.14778/3236187.3236207.

[86] Yannis Papakonstantinou and Victor Vianu. “DTD inference for views of XML data”. In:
Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. PODS ’00. New York, NY, USA: Association for Computing Machinery,
May 2000. doi: 10.1145/335168.335173.

[87] Charles Paperman. “Circuits booléens, prédicats modulaires et langages réguliers”. PhD
thesis. Université Paris Diderot, 2014.

[88] Charles Paperman. Semigroup Online. 2015. url: https://paperman.name/semigroup/.

[89] Charles Paperman, Sylvain Salvati, and Claire Soyez-Martin. “An Algebraic Approach
to Vectorial Programs”. In: 40th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2023). Ed. by Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and
Mamadou Moustapha Kanté. Vol. 254. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi: 10.4230/LIPIcs.STACS.2023.51.

[90] Sushant Patnaik and Neil Immerman. “Dyn-FO: A Parallel, Dynamic Complexity Class”.
In: Journal of Computer and System Sciences 55.2 (1997). doi: 10.1006/jcss.1997.1520.

[91] Pierre Péladeau. “Logically defined subsets of Nk”. In: Theoretical Computer Science 93.2
(1992). doi: 10.1016/0304-3975(92)90328-D.

[92] Jean-Eric Pin. “A variety theorem without complementation”. In: Russian Mathematics
(Izvestija vuzov.Matematika) 39 (1995).

[93] Jean-Eric Pin. “BG=PG: a success story”. In: NATO ASI Series C Mathematical and Physical
Sciences-Advanced Study Institute 466 (1995).

[94] Jean-Eric Pin. Handbook of Automata Theory. EMS Press, 2021. doi: 10.4171/automata.

[95] Jean-Eric Pin. Mathematical foundations of automata theory. 2014. url: http://www.irif.
fr/~jep/PDF/MPRI/MPRI.pdf.

[96] Jean-Eric Pin. “On reversible automata”. In: Proc. LATIN 1992. Springer, 1992.

https://doi.org/10.1007/s00037-019-00177-4
https://doi.org/10.1016/0304-3975(94)90159-7
https://doi.org/10.1145/2902251.2902299
https://doi.org/10.1109/TKDE.2007.1063
https://doi.org/10.14778/3236187.3236207
https://doi.org/10.1145/335168.335173
https://paperman.name/semigroup/
https://doi.org/10.4230/LIPIcs.STACS.2023.51
https://doi.org/10.1006/jcss.1997.1520
https://doi.org/10.1016/0304-3975(92)90328-D
https://doi.org/10.4171/automata
http://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf

Bibliography 185

[97] Jean-Eric Pin. “Profinite Methods in Automata Theory”. In: 26th International Symposium
on Theoretical Aspects of Computer Science. Ed. by Susanne Albers and Jean-Yves Marion.
Vol. 3. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2009. doi: 10.4230/LIPIcs.STACS.
2009.1856.

[98] Jean-Eric Pin, Arnaud Pinguet, and Pascal Weil. “Ordered categories and ordered semi-
groups”. en. In: Communications in Algebra 30.12 (Dec. 2002). doi: 10 . 1081 / AGB -
120016004.

[99] Jean-Eric Pin and Howard Straubing. “Some results on C-varieties”. eng. In: RAIRO -
Theoretical Informatics and Applications 39.1 (Mar. 2010). doi: 10.1051/ita:2005014.

[100] Jean-Eric Pin and Pascal Weil. “Polynomial Closure and Unambiguous Product”. In:
Proceedings of the 22nd International Colloquium on Automata, Languages and Programming.
ICALP ’95. Berlin, Heidelberg: Springer-Verlag, 1995. doi: 10.5555/646249.685349.

[101] Jean-Eric Pin and Pascal Weil. “The wreath product principle for ordered semigroups”.
In: Communications in Algebra 30 (2002).

[102] Nicholas Pippenger. “Superconcentrators”. In: All HMC Faculty Publications and Research
(Jan. 1977). doi: 10.1137/0206022.

[103] Thomas Place and Marc Zeitoun. “Going Higher in First-Order Quantifier Alternation
Hierarchies on Words”. In: Journal of the ACM 66.2 (Mar. 2019). doi: 10.1145/3303991.

[104] Vladimir V. Podolskii. “Exponential lower bound for bounded depth circuits with few
threshold gates”. en. In: Information Processing Letters 112.7 (Mar. 2012). doi: 10.1016/j.
ipl.2011.12.011.

[105] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. “Rethinking SIMD Vector-
ization for In-Memory Databases”. In: Proc. SIGMOD 2015. ACM, 2015. doi: 10.1145/
2723372.2747645.

[106] P. Pudlák. “Communication in bounded depth circuits”. en. In: Combinatorica 14.2 (June
1994). doi: 10.1007/BF01215351.

[107] Anup Rao. Coding for Sunflowers. Feb. 2020. doi: 10.48550/arXiv.1909.04774.

[108] A. A. Razborov. “Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition”. en. In: Mathematical notes of the Academy of Sciences of the
USSR 41.4 (Apr. 1987). doi: 10.1007/BF01137685.

[109] Jan Reiterman. “The Birkhoff theorem for finite algebras”. In: algebra universalis 14 (1982).
doi: 10.1007/BF02483902.

[110] Gang Ren, Peng Wu, and David A. Padua. “An Empirical Study On the Vectorization of
Multimedia Applications for Multimedia Extensions”. In: Proc. IPDPS 2005. IEEE, 2005.
doi: 10.1109/IPDPS.2005.94.

[111] Benjamin Rossman. “On the constant-depth complexity of k-clique”. In: Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing. STOC ’08. Victoria, British
Columbia, Canada: Association for Computing Machinery, 2008. doi: 10.1145/1374376.
1374480.

[112] M. P. Schützenberger. “Une théorie algébrique du codage”. fre. In: Séminaire Dubreil.
Algèbre et théorie des nombres 9 (1955).

[113] M.P. Schützenberger. “On finite monoids having only trivial subgroups”. In: Information
and Control 8.2 (1965). doi: 10.1016/S0019-9958(65)90108-7.

https://doi.org/10.4230/LIPIcs.STACS.2009.1856
https://doi.org/10.4230/LIPIcs.STACS.2009.1856
https://doi.org/10.1081/AGB-120016004
https://doi.org/10.1081/AGB-120016004
https://doi.org/10.1051/ita:2005014
https://doi.org/10.5555/646249.685349
https://doi.org/10.1137/0206022
https://doi.org/10.1145/3303991
https://doi.org/10.1016/j.ipl.2011.12.011
https://doi.org/10.1016/j.ipl.2011.12.011
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1007/BF01215351
https://doi.org/10.48550/arXiv.1909.04774
https://doi.org/10.1007/BF01137685
https://doi.org/10.1007/BF02483902
https://doi.org/10.1109/IPDPS.2005.94
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1016/S0019-9958(65)90108-7

186 Bibliography

[114] Thomas Schwentick and Thomas Zeume. “Dynamic complexity: recent updates”. In:
ACM SIGLOG News 3.2 (2016). doi: 10.1145/2948896.2948899.

[115] Luc Segoufin and Cristina Sirangelo. “Constant-Memory Validation of Streaming XML
Documents Against DTDs”. In: Proc. ICDT 2007. Springer, 2007. doi: 10.1007/11965893\
_21.

[116] Luc Segoufin and Victor Vianu. “Validating Streaming XML Documents”. In: Proc. PODS
2002. ACM, 2002. doi: 10.1145/543613.543622.

[117] Claude E. Shannon. “A symbolic analysis of relay and switching circuits”. In: Transactions
of the American Institute of Electrical Engineers 57.12 (1938). doi: 10.1109/T-AIEE.1938.
5057767.

[118] Claude. E. Shannon. “The synthesis of two-terminal switching circuits”. In: The Bell
System Technical Journal 28.1 (1949). doi: 10.1002/j.1538-7305.1949.tb03624.x.

[119] Imre Simon. “Piecewise testable events”. In: Automata Theory and Formal Languages. Ed.
by H. Brakhage. Berlin, Heidelberg: Springer Berlin Heidelberg, 1975. doi: 10.1007/3-
540-07407-4_23.

[120] Michael Sipser. “A topological view of some problems in complexity theory”. en. In:
Mathematical Foundations of Computer Science 1984. Ed. by M. P. Chytil and V. Koubek.
Vol. 176. Berlin/Heidelberg: Springer-Verlag, 1984. doi: 10.1007/BFb0030341.

[121] Michael Sipser. “Borel sets and circuit complexity”. In: Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing. STOC ’83. New York, NY, USA: Association for
Computing Machinery, 1983. doi: 10.1145/800061.808733.

[122] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. “Dynamic word
problems”. In: J. ACM 44.2 (1997). doi: 10.1145/256303.256309.

[123] R. Smolensky. “Algebraic methods in the theory of lower bounds for Boolean circuit
complexity”. en. In: Proceedings of the nineteenth annual ACM conference on Theory of
computing - STOC ’87. New York, New York, United States: ACM Press, 1987. doi: 10.
1145/28395.28404.

[124] Howard Straubing. “Constant-depth periodic circuits”. In: International Journal of Algebra
and Computation 01.01 (1991). doi: 10.1142/S0218196791000043.

[125] Howard Straubing. “Families of recognizable sets corresponding to certain varieties of
finite monoids”. In: Journal of Pure and Applied Algebra 15.3 (1979). doi: 10.1016/0022-
4049(79)90024-0.

[126] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. en. Boston, MA:
Birkhäuser, 1994. doi: 10.1007/978-1-4612-0289-9.

[127] Howard Straubing. “Finite semigroup varieties of the form V ∗ D”. en. In: Journal of Pure
and Applied Algebra 36 (Jan. 1985). doi: 10.1016/0022-4049(85)90062-3.

[128] Dan Suciu. “From searching text to querying XML streams”. In: J. Discrete Algorithms 2.1
(2004). doi: 10.1007/3-540-45735-6_2.

[129] Pascal Tesson and Denis Thérien. “Diamonds are forever: the variety da”. In: Semigroups,
Algorithms, Automata and Languages. WORLD SCIENTIFIC, Nov. 2002. doi: 10.1142/
9789812776884_0021.

[130] Wolfgang Thomas. “Languages, Automata, and Logic”. In: Handbook of Formal Languages:
Volume 3 Beyond Words. Ed. by Grzegorz Rozenberg and Arto Salomaa. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997. doi: 10.1007/978-3-642-59126-6_7.

https://doi.org/10.1145/2948896.2948899
https://doi.org/10.1007/11965893_21
https://doi.org/10.1007/11965893_21
https://doi.org/10.1145/543613.543622
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/BFb0030341
https://doi.org/10.1145/800061.808733
https://doi.org/10.1145/256303.256309
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1142/S0218196791000043
https://doi.org/10.1016/0022-4049(79)90024-0
https://doi.org/10.1016/0022-4049(79)90024-0
https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1016/0022-4049(85)90062-3
https://doi.org/10.1007/3-540-45735-6_2
https://doi.org/10.1142/9789812776884_0021
https://doi.org/10.1142/9789812776884_0021
https://doi.org/10.1007/978-3-642-59126-6_7

Bibliography 187

[131] Bret Tilson. “Categories as algebra: An essential ingredient in the theory of monoids”. en.
In: Journal of Pure and Applied Algebra 48.1 (Sept. 1987). doi: 10.1016/0022-4049(87)
90108-3.

[132] Felix Tschirbs, Nils Vortmeier, and Thomas Zeume. “Dynamic Complexity of Regular
Languages: Big Changes, Small Work”. In: 31st EACSL Annual Conference on Computer
Science Logic (CSL 2023). Ed. by Bartek Klin and Elaine Pimentel. Vol. 252. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPIcs.CSL.2023.35.

[133] Leslie G. Valiant. “Graph-theoretic arguments in low-level complexity”. en. In: Mathemat-
ical Foundations of Computer Science 1977. Ed. by Jozef Gruska. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1977. doi: 10.1007/3-540-08353-7_135.

[134] Leslie G. Valiant. “On non-linear lower bounds in computational complexity”. en. In:
Proceedings of seventh annual ACM symposium on Theory of computing - STOC ’75. Albu-
querque, New Mexico, United States: ACM Press, 1975. doi: 10.1145/800116.803752.

[135] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural
networks on CPUs. 2011.

[136] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer Berlin
Heidelberg, 1999. doi: 10.1007/978-3-662-03927-4.

[137] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu, and
Heqing Zhu. “Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs”. In:
Proc. NSDI 2019. USENIX Association, 2019.

[138] Ryan Williams. “Non-uniform ACC Circuit Lower Bounds”. In: 2011 IEEE 26th Annual
Conference on Computational Complexity. 2011. doi: 10.1109/CCC.2011.36.

[139] Thomas Zeume and Thomas Schwentick. “On the quantifier-free dynamic complexity of
Reachability”. In: Information and Computation 240 (2015). doi: 10.1016/j.ic.2014.09.
011.

[140] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “On complexity and optimization of
expensive queries in complex event processing”. In: Proc. SIGMOD 2014. ACM, 2014.
doi: 10.1145/2588555.2593671.

[141] Yichun Zhang. Regex Engine Matching Speed Benchmark. 2015. url: http://openresty.
org/misc/re/bench/.

[142] Jingren Zhou and Kenneth A. Ross. “Implementing database operations using SIMD
instructions”. In: Proc. SIGMOD 2002. ACM, 2002. doi: 10.1145/564691.564709.

https://doi.org/10.1016/0022-4049(87)90108-3
https://doi.org/10.1016/0022-4049(87)90108-3
https://doi.org/10.4230/LIPIcs.CSL.2023.35
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1145/800116.803752
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1109/CCC.2011.36
https://doi.org/10.1016/j.ic.2014.09.011
https://doi.org/10.1016/j.ic.2014.09.011
https://doi.org/10.1145/2588555.2593671
http://openresty.org/misc/re/bench/
http://openresty.org/misc/re/bench/
https://doi.org/10.1145/564691.564709

188 Bibliography

On the complexity of regular languages.

Abstract

Regular languages, languages computed by finite automata, are among the simplest objects in theoretical
computer science. This thesis explores several computation models: parallel computing with Boolean
circuits, processing of structured documents in streaming, and information maintenance on a structure
subject to incremental updates. For the latter, auxiliary structures are either stored in RAM or represented
by databases updated by logical formulae.
This thesis investigates the resources required to compute classes of regular languages in each of these
models. The methods employed rely on the interaction between algebra, logic, and combinatorics, notably
exploiting the theory of finite semigroups. This approach of complexity has proven extremely fruitful,
particularly in the context of Boolean circuits, where regular languages play a central role. This research
angle was crystallised by Howard Straubing in his book "Finite Automata, Formal Logic, and Circuit
Complexity", where he conjectured that any regular language definable by an arbitrary formula from a
logic fragment can be rewritten to use only simple, regular predicates.
The first objective of this manuscript is to prove this conjecture in the case of the Σ2 fragment of first-order
logic with a single alternation of quantification. A second result provides a description of space complexity,
in the streaming model, for verifying regular properties on trees. Special attention is given to properties
verifiable in constant and logarithmic space. A third objective is to describe all regular tree languages that
can be incrementally maintained in constant time in RAM. Finally, a last part focuses on the development
of efficient logical formulae for maintaining all regular languages in the relational model.

Keywords: regular languages, circuit complexity, finite semigroups, formal logic, tree languages, dynamic
problems.

Sur la complexité des langages réguliers.

Résumé

Les langages réguliers, langages calculés par automates finis, sont parmi les objets les plus simples de
l’informatique théorique. Cette thèse étudie plusieurs modèles de calculs : le calcul parallèle avec les
circuits booléens, le traitement en flot de documents structurés, et la maintenance d’information sur une
structure soumise à des mises à jour incrémentales. Pour ce dernier modèle, les structures auxiliaires sont
soit stockées en RAM, soit représentées par des bases de données mises à jour par des formules logiques.
Cette thèse étudie les ressources nécessaires pour calculer des classes de langages réguliers dans chacun
de ces modèles. Les méthodes employées exploitent l’interaction entre algèbre, logique et combinatoire,
en mettant notamment à profit la théorie des semigroupes finis. Cette approche de la complexité s’est
notamment montrée extrêmement fructueuse dans le cadre des circuits booléens, où les langages réguliers
jouent un rôle central. Cette angle de recherche a été cristallisé par Howard Straubing dans son livre
“Finite Automata, Formal Logic, and Circuit Complexity”, où il émet la conjecture que tout langage régulier
définissable par une formule arbitraire d’un fragment de logique peut être réécrite en utilisant uniquement
des prédicats simples, c’est-à-dire réguliers.
Le premier but de ce manuscrit est de prouver cette conjecture dans le cas du fragment Σ2 de la logique du
premier-ordre avec une seule alternance de quantification. Un deuxième résultat propose une description
de la complexité en espace, dans le modèle de flot, pour vérifier des propriétés régulières sur des arbres. Une
attention particulière est portée aux propriétés vérifiables en espace constant et logarithmique. Un troisième
objectif est de décrire tous les langages réguliers d’arbres pouvant être maintenus incrémentalement en
temps constant en RAM. Enfin, une dernière partie porte sur le développement de formules logiques
efficaces pour maintenir tous les langages réguliers dans le modèle relationnel.

Mots clés : languages réguliers, complexité de circuits, semigroupes finis, logique formelle, languages
d’arbres, problèmes dynamiques.

CRIStAL
Université de Lille - Campus scientifique – Bâtiment ESPRIT – Avenue Henri Poincaré – 59655
Villeneuve d’Ascq

	Abstract
	Remerciements
	Contents
	Introduction
	I Preliminaries
	Notations
	1 Automata and Logic
	1.1 Finite automata on finite words
	1.2 Finite automata on finite trees
	1.3 Monadic second-order logic
	1.3.1 Formalism
	1.3.2 Links with regular languages.
	1.3.3 Defining languages

	2 Algebra and Topology
	2.1 Finite monoids
	2.2 Varieties of finite monoids
	2.2.1 Languages and monoids
	2.2.2 Principal varieties of monoids.

	2.3 Ordered monoids
	2.4 Adding regular predicates
	2.4.1 C-varieties
	2.4.2 Wreath product
	2.4.3 Interplay with logic

	2.5 The profinite realm
	2.5.1 Reminders of topology
	2.5.2 The profinite topology

	2.6 Forest algebras

	3 Circuit Complexity and Lower Bounds
	3.1 Boolean circuits
	3.1.1 Definitions
	3.1.2 Classes of small circuits

	3.2 Adding arbitrary predicates to the logic
	3.3 Lower bounds
	3.3.1 The parity language
	3.3.2 Depth hierarchy
	3.3.3 Superconcentrators
	3.3.4 Discriminator lemma

	4 Regular Languages and Circuit Classes
	4.1 Separations witnessed by regular languages
	4.1.1 Barrington's theorem.
	4.1.2 Depth hierarchy
	4.1.3 Importance of the addition function

	4.2 Straubing properties
	4.2.1 Statement
	4.2.2 Positive examples
	4.2.3 First negative example: FO+S5
	4.2.4 Second negative example: FOMODFO

	II Results on Regular Languages
	5 Circuit Complexity: the Regular Languages of 2
	5.1 Lower bounds against 2[arb]
	5.1.1 Limits
	5.1.2 Sunflower lemma
	5.1.3 Tangledness

	5.2 Warm-up : (ac*b+c)*2[arb]
	5.3 Neutral Straubing property
	5.3.1 If a language not in 2[<] is in 2[arb], we can separate Good from Bad with a language in 2[arb]
	5.3.2 No language in 2[arb] separates Good from Bad

	5.4 Full Straubing property
	5.4.1 Category theory
	5.4.2 Adaptation of the proof

	5.5 Going further

	6 Streaming Complexity: Processing Regular Properties of XML Documents
	6.1 Weak validation
	6.2 Registerless languages
	6.2.1 Almost-reversibility
	6.2.2 Flatness

	6.3 Stackless model
	6.3.1 Depth-register automata
	6.3.2 Hierarchical almost-reversibility

	6.4 Term encoding
	6.5 Algebraic characterisations
	6.5.1 Checking first and last letter
	6.5.2 Equivalences

	6.6 Going further

	7 Incremental Complexity: Maintaining Regular Languages under Small Changes
	7.1 Two models
	7.1.1 The RAM model
	7.1.2 Dynamic first-order logic

	7.2 Regular languages maintainable in RAM
	7.2.1 Almost-commutative languages
	7.2.2 Equations
	7.2.3 Regular languages maintainable in constant time
	7.2.4 Going further

	7.3 Regular languages in Dyn-FO
	7.3.1 Regular languages in UDyn-Prop
	7.3.2 Regular languages in UDyn-2
	7.3.3 Regular languages in UDyn-FO2
	7.3.4 Going further

	Conclusion
	Bibliography

